ChatIE: Zero-Shot Information Extraction via Chatting with ChatGPT
- URL: http://arxiv.org/abs/2302.10205v2
- Date: Mon, 27 May 2024 07:08:31 GMT
- Title: ChatIE: Zero-Shot Information Extraction via Chatting with ChatGPT
- Authors: Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang, Xin Zhang, Shen Huang, Pengjun Xie, Jinan Xu, Yufeng Chen, Meishan Zhang, Yong Jiang, Wenjuan Han,
- Abstract summary: Zero-shot information extraction (IE) aims to build IE systems from the unannotated text.
Recent efforts on large language models (LLMs, e.g., GPT-3, ChatGPT) show promising performance on zero-shot settings.
We transform the zero-shot IE task into a multi-turn question-answering problem with a two-stage framework (ChatIE)
- Score: 89.49161588240061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-shot information extraction (IE) aims to build IE systems from the unannotated text. It is challenging due to involving little human intervention. Challenging but worthwhile, zero-shot IE reduces the time and effort that data labeling takes. Recent efforts on large language models (LLMs, e.g., GPT-3, ChatGPT) show promising performance on zero-shot settings, thus inspiring us to explore prompt-based methods. In this work, we ask whether strong IE models can be constructed by directly prompting LLMs. Specifically, we transform the zero-shot IE task into a multi-turn question-answering problem with a two-stage framework (ChatIE). With the power of ChatGPT, we extensively evaluate our framework on three IE tasks: entity-relation triple extract, named entity recognition, and event extraction. Empirical results on six datasets across two languages show that ChatIE achieves impressive performance and even surpasses some full-shot models on several datasets (e.g., NYT11-HRL). We believe that our work could shed light on building IE models with limited resources.
Related papers
- ADELIE: Aligning Large Language Models on Information Extraction [55.60192044049083]
Large language models (LLMs) usually fall short on information extraction tasks.
In this paper, we introduce ADELIE, an aligned LLM that effectively solves various IE tasks.
We show that our models achieve state-of-the-art (SoTA) performance among open-source models.
arXiv Detail & Related papers (2024-05-08T12:24:52Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation.
We present an extensive overview by categorizing these works in terms of various IE subtasks and techniques.
We empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs.
arXiv Detail & Related papers (2023-12-29T14:25:22Z) - Mirror: A Universal Framework for Various Information Extraction Tasks [28.43708291298155]
We propose a universal framework for various IE tasks, namely Mirror.
We recast existing IE tasks as a multi-span cyclic graph extraction problem and devise a non-autoregressive graph decoding algorithm.
Our model has decent compatibility and outperforms or reaches competitive performance with SOTA systems.
arXiv Detail & Related papers (2023-11-09T14:58:46Z) - WebIE: Faithful and Robust Information Extraction on the Web [7.361265860494963]
We present WebIE, the first large-scale, entity-linked closed IE dataset consisting of 1.6M sentences.
WebIE includes negative examples, i.e. sentences without fact triples, to better reflect the data on the web.
We evaluate the in-domain, out-of-domain, and zero-shot cross-lingual performance of generative IE models and find models trained on WebIE show better generalisability.
arXiv Detail & Related papers (2023-05-23T17:37:53Z) - InstructIE: A Bilingual Instruction-based Information Extraction Dataset [44.65162892808696]
Large language models can perform well on general natural language tasks, but their effectiveness is still suboptimal for information extraction (IE)
Recent works indicate that the main reason lies in the lack of extensive data on IE instructions.
We introduce InstructIE, a bilingual instruction-based IE dataset, which covers 12 diverse domains.
arXiv Detail & Related papers (2023-05-19T08:51:11Z) - Easy-to-Hard Learning for Information Extraction [57.827955646831526]
Information extraction systems aim to automatically extract structured information from unstructured texts.
We propose a unified easy-to-hard learning framework consisting of three stages, i.e., the easy stage, the hard stage, and the main stage.
By breaking down the learning process into multiple stages, our framework facilitates the model to acquire general IE task knowledge and improve its generalization ability.
arXiv Detail & Related papers (2023-05-16T06:04:14Z) - CodeIE: Large Code Generation Models are Better Few-Shot Information
Extractors [92.17328076003628]
Large language models (LLMs) pre-trained on massive corpora have demonstrated impressive few-shot learning ability on many NLP tasks.
In this paper, we propose to recast the structured output in the form of code instead of natural language.
arXiv Detail & Related papers (2023-05-09T18:40:31Z) - Understanding HTML with Large Language Models [73.92747433749271]
Large language models (LLMs) have shown exceptional performance on a variety of natural language tasks.
We contribute HTML understanding models (fine-tuned LLMs) and an in-depth analysis of their capabilities under three tasks.
We show that LLMs pretrained on standard natural language corpora transfer remarkably well to HTML understanding tasks.
arXiv Detail & Related papers (2022-10-08T07:27:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.