Non-pooling Network for medical image segmentation
- URL: http://arxiv.org/abs/2302.10412v1
- Date: Tue, 21 Feb 2023 02:49:16 GMT
- Title: Non-pooling Network for medical image segmentation
- Authors: Weihu Song, Heng Yu
- Abstract summary: This paper proposes non-pooling network(NPNet), non-pooling commendably reduces the loss of information and attention enhancement.
We evaluate the semantic segmentation model of our NPNet on three benchmark datasets comparing w i t h multiple current state-of-the-art(SOTA) models.
- Score: 11.956054700035326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing studies tend tofocus onmodel modifications and integration with
higher accuracy, which improve performance but also carry huge computational
costs, resulting in longer detection times. Inmedical imaging, the use of time
is extremely sensitive. And at present most of the semantic segmentation models
have encoder-decoder structure or double branch structure. Their several times
of the pooling use with high-level semantic information extraction operation
cause information loss although there si a reverse pooling or other similar
action to restore information loss of pooling operation. In addition, we notice
that visual attention mechanism has superior performance on a variety of tasks.
Given this, this paper proposes non-pooling network(NPNet), non-pooling
commendably reduces the loss of information and attention enhancement m o d u l
e ( A M ) effectively increases the weight of useful information. The method
greatly reduces the number of parametersand computation costs by the shallow
neural network structure. We evaluate the semantic segmentation model of our
NPNet on three benchmark datasets comparing w i t h multiple current
state-of-the-art(SOTA) models, and the implementation results show thatour
NPNetachieves SOTA performance, with an excellent balance between accuracyand
speed.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Event-Stream Super Resolution using Sigma-Delta Neural Network [0.10923877073891444]
Event cameras present unique challenges due to their low resolution and sparse, asynchronous nature of the data they collect.
Current event super-resolution algorithms are not fully optimized for the distinct data structure produced by event cameras.
Research proposes a method that integrates binary spikes with Sigma Delta Neural Networks (SDNNs)
arXiv Detail & Related papers (2024-08-13T15:25:18Z) - An Enhanced Encoder-Decoder Network Architecture for Reducing Information Loss in Image Semantic Segmentation [6.596361762662328]
We introduce an innovative encoder-decoder network structure enhanced with residual connections.
Our approach employs a multi-residual connection strategy designed to preserve the intricate details across various image scales more effectively.
To enhance the convergence rate of network training and mitigate sample imbalance issues, we have devised a modified cross-entropy loss function.
arXiv Detail & Related papers (2024-05-26T05:15:53Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
Trends indicate that deeper and larger neural networks with an increasing number of parameters achieve higher accuracy than smaller neural networks.
We generalize structured pruning with algorithms for network augmentation, pruning, sub-network collapse and removal.
The resulting CNN executes efficiently on GPU hardware without computationally expensive sparse matrix operations.
arXiv Detail & Related papers (2023-08-28T14:19:13Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
We propose a 3D medical image segmentation approach, named UNETR++, that offers both high-quality segmentation masks as well as efficiency in terms of parameters, compute cost, and inference speed.
The core of our design is the introduction of a novel efficient paired attention (EPA) block that efficiently learns spatial and channel-wise discriminative features.
Our evaluations on five benchmarks, Synapse, BTCV, ACDC, BRaTs, and Decathlon-Lung, reveal the effectiveness of our contributions in terms of both efficiency and accuracy.
arXiv Detail & Related papers (2022-12-08T18:59:57Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - EDNet: Efficient Disparity Estimation with Cost Volume Combination and
Attention-based Spatial Residual [17.638034176859932]
Existing disparity estimation works mostly leverage the 4D concatenation volume and construct a very deep 3D convolution neural network (CNN) for disparity regression.
In this paper, we propose a network named EDNet for efficient disparity estimation.
Experiments on the Scene Flow and KITTI datasets show that EDNet outperforms the previous 3D CNN based works.
arXiv Detail & Related papers (2020-10-26T04:49:44Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
This paper is on highly accurate and highly efficient human pose estimation.
We re-analyze this design choice in the context of improving both the accuracy and the efficiency over the state-of-the-art.
Our model achieves state-of-the-art results on the MPII and LSP datasets.
arXiv Detail & Related papers (2020-02-25T18:51:51Z) - Selective Convolutional Network: An Efficient Object Detector with
Ignoring Background [28.591619763438054]
We introduce an efficient object detector called Selective Convolutional Network (SCN), which selectively calculates only on the locations that contain meaningful and conducive information.
To solve it, we design an elaborate structure with negligible overheads to guide the network where to look next.
arXiv Detail & Related papers (2020-02-04T10:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.