Harris Hawks Feature Selection in Distributed Machine Learning for
Secure IoT Environments
- URL: http://arxiv.org/abs/2302.12205v1
- Date: Mon, 20 Feb 2023 09:38:12 GMT
- Title: Harris Hawks Feature Selection in Distributed Machine Learning for
Secure IoT Environments
- Authors: Neveen Hijazi, Moayad Aloqaily, Bassem Ouni, Fakhri Karray, Merouane
Debbah
- Abstract summary: Internet of Things (IoT) applications can collect and transfer sensitive data.
It is necessary to develop new methods to detect hacked IoT devices.
This paper proposes a Feature Selection (FS) model based on Harris Hawks Optimization (HHO) and Random Weight Network (RWN) to detect IoT botnet attacks.
- Score: 8.690178186919635
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The development of the Internet of Things (IoT) has dramatically expanded our
daily lives, playing a pivotal role in the enablement of smart cities,
healthcare, and buildings. Emerging technologies, such as IoT, seek to improve
the quality of service in cognitive cities. Although IoT applications are
helpful in smart building applications, they present a real risk as the large
number of interconnected devices in those buildings, using heterogeneous
networks, increases the number of potential IoT attacks. IoT applications can
collect and transfer sensitive data. Therefore, it is necessary to develop new
methods to detect hacked IoT devices. This paper proposes a Feature Selection
(FS) model based on Harris Hawks Optimization (HHO) and Random Weight Network
(RWN) to detect IoT botnet attacks launched from compromised IoT devices.
Distributed Machine Learning (DML) aims to train models locally on edge devices
without sharing data to a central server. Therefore, we apply the proposed
approach using centralized and distributed ML models. Both learning models are
evaluated under two benchmark datasets for IoT botnet attacks and compared with
other well-known classification techniques using different evaluation
indicators. The experimental results show an improvement in terms of accuracy,
precision, recall, and F-measure in most cases. The proposed method achieves an
average F-measure up to 99.9\%. The results show that the DML model achieves
competitive performance against centralized ML while maintaining the data
locally.
Related papers
- Efficient Federated Intrusion Detection in 5G ecosystem using optimized BERT-based model [0.7100520098029439]
5G offers advanced services, supporting applications such as intelligent transportation, connected healthcare, and smart cities within the Internet of Things (IoT)
These advancements introduce significant security challenges, with increasingly sophisticated cyber-attacks.
This paper proposes a robust intrusion detection system (IDS) using federated learning and large language models (LLMs)
arXiv Detail & Related papers (2024-09-28T15:56:28Z) - IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
Internet of Things (IoT) has altered living by controlling devices/things over the Internet.
To bring down the IoT network, attackers can utilise these devices to conduct a variety of network attacks.
In this paper, we have developed an unsupervised ensemble learning model that is able to detect new or unknown attacks in an IoT network from an unlabelled dataset.
arXiv Detail & Related papers (2022-07-16T11:12:32Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
cooperative edge learning (CE-FL) is a distributed machine learning architecture.
We model the processes taken during CE-FL, and conduct analytical training.
We show the effectiveness of our framework with the data collected from a real-world testbed.
arXiv Detail & Related papers (2022-03-26T00:41:57Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing.
For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data.
This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices.
arXiv Detail & Related papers (2022-02-07T15:04:15Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
We build a FedIoT platform that contains a synthesized dataset using N-BaIoT, FedDetect algorithm, and a system design for IoT devices.
In a network of realistic IoT devices (PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance.
arXiv Detail & Related papers (2021-06-15T08:53:42Z) - IoT Security: Botnet detection in IoT using Machine learning [0.0]
This research work is to propose an innovative model using machine learning algorithm to detect and mitigate botnet-based distributed denial of service (DDoS) attack in IoT network.
Our proposed model tackles the security issue concerning the threats from bots.
arXiv Detail & Related papers (2021-04-06T01:47:50Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - The Case for Retraining of ML Models for IoT Device Identification at
the Edge [0.026215338446228163]
We show how to identify IoT devices based on their network behavior using resources available at the edge of the network.
It is possible to achieve device identification and categorization with over 80% and 90% accuracy respectively at the edge.
arXiv Detail & Related papers (2020-11-17T13:01:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.