STA: Self-controlled Text Augmentation for Improving Text
Classifications
- URL: http://arxiv.org/abs/2302.12784v1
- Date: Fri, 24 Feb 2023 17:54:12 GMT
- Title: STA: Self-controlled Text Augmentation for Improving Text
Classifications
- Authors: Congcong Wang and Gonzalo Fiz Pontiveros and Steven Derby and Tri
Kurniawan Wijaya
- Abstract summary: A number of text augmentation techniques have emerged in the field of Natural Language Processing (NLP)
We introduce a state-of-the-art approach for Self-Controlled Text Augmentation (STA)
Our approach tightly controls the generation process by introducing a self-checking procedure to ensure that generated examples retain the semantic content of the original text.
- Score: 2.9669250132689164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advancements in Machine Learning, many tasks still involve
working in low-data regimes which can make solving natural language problems
difficult. Recently, a number of text augmentation techniques have emerged in
the field of Natural Language Processing (NLP) which can enrich the training
data with new examples, though they are not without their caveats. For
instance, simple rule-based heuristic methods are effective, but lack variation
in semantic content and syntactic structure with respect to the original text.
On the other hand, more complex deep learning approaches can cause extreme
shifts in the intrinsic meaning of the text and introduce unwanted noise into
the training data. To more reliably control the quality of the augmented
examples, we introduce a state-of-the-art approach for Self-Controlled Text
Augmentation (STA). Our approach tightly controls the generation process by
introducing a self-checking procedure to ensure that generated examples retain
the semantic content of the original text. Experimental results on multiple
benchmarking datasets demonstrate that STA substantially outperforms existing
state-of-the-art techniques, whilst qualitative analysis reveals that the
generated examples are both lexically diverse and semantically reliable.
Related papers
- Sequential Visual and Semantic Consistency for Semi-supervised Text
Recognition [56.968108142307976]
Scene text recognition (STR) is a challenging task that requires large-scale annotated data for training.
Most existing STR methods resort to synthetic data, which may introduce domain discrepancy and degrade the performance of STR models.
This paper proposes a novel semi-supervised learning method for STR that incorporates word-level consistency regularization from both visual and semantic aspects.
arXiv Detail & Related papers (2024-02-24T13:00:54Z) - Text2Data: Low-Resource Data Generation with Textual Control [104.38011760992637]
Natural language serves as a common and straightforward control signal for humans to interact seamlessly with machines.
We propose Text2Data, a novel approach that utilizes unlabeled data to understand the underlying data distribution through an unsupervised diffusion model.
It undergoes controllable finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting.
arXiv Detail & Related papers (2024-02-08T03:41:39Z) - Successor Features for Efficient Multisubject Controlled Text Generation [48.37713738712319]
We introduce SF-GEN, which is grounded in two primary concepts: successor features (SFs) and language model rectification.
SF-GEN seamlessly integrates the two to enable dynamic steering of text generation with no need to alter the LLM's parameters.
To the best of our knowledge, our research represents the first application of successor features in text generation.
arXiv Detail & Related papers (2023-11-03T00:17:08Z) - KEST: Kernel Distance Based Efficient Self-Training for Improving
Controllable Text Generation [24.47531522553703]
We propose KEST, a novel and efficient self-training framework to handle these problems.
KEST utilizes a kernel-based loss, rather than standard cross entropy, to learn from the soft pseudo text produced by a shared non-autoregressive generator.
Experiments on three controllable generation tasks demonstrate that KEST significantly improves control accuracy while maintaining comparable text fluency and generation diversity against several strong baselines.
arXiv Detail & Related papers (2023-06-17T19:40:57Z) - FAST: Improving Controllability for Text Generation with Feedback Aware
Self-Training [25.75982440355576]
Controllable text generation systems often leverage control codes to direct various properties of the output like style and length.
Inspired by recent work on causal inference for NLP, this paper reveals a previously overlooked flaw in these control code-based conditional text generation algorithms.
We propose two simple techniques to reduce these correlations in training sets.
arXiv Detail & Related papers (2022-10-06T19:00:51Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
We propose Curriculum-Based Self-Training (CBST) to leverage unlabeled data in a rearranged order determined by the difficulty of text generation.
Our method can outperform fine-tuning and task-adaptive pre-training methods, and achieve state-of-the-art performance in the few-shot setting of data-to-text generation.
arXiv Detail & Related papers (2022-06-06T16:11:58Z) - To Augment or Not to Augment? A Comparative Study on Text Augmentation
Techniques for Low-Resource NLP [0.0]
We investigate three categories of text augmentation methodologies which perform changes on the syntax.
We compare them on part-of-speech tagging, dependency parsing and semantic role labeling for a diverse set of language families.
Our results suggest that the augmentation techniques can further improve over strong baselines based on mBERT.
arXiv Detail & Related papers (2021-11-18T10:52:48Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - Contextualized Perturbation for Textual Adversarial Attack [56.370304308573274]
Adversarial examples expose the vulnerabilities of natural language processing (NLP) models.
This paper presents CLARE, a ContextuaLized AdversaRial Example generation model that produces fluent and grammatical outputs.
arXiv Detail & Related papers (2020-09-16T06:53:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.