DeepBrainPrint: A Novel Contrastive Framework for Brain MRI
Re-Identification
- URL: http://arxiv.org/abs/2302.13057v2
- Date: Sun, 24 Sep 2023 16:46:15 GMT
- Title: DeepBrainPrint: A Novel Contrastive Framework for Brain MRI
Re-Identification
- Authors: Lemuel Puglisi (for the Alzheimer's Disease Neuroimaging Initiative),
Frederik Barkhof, Daniel C. Alexander, Geoffrey JM Parker, Arman Eshaghi,
Daniele Rav\`i
- Abstract summary: We propose an AI-powered framework called DeepBrainPrint to retrieve brain MRI scans of the same patient.
Our framework is a semi-self-supervised contrastive deep learning approach with three main innovations.
We tested DeepBrainPrint on a large dataset of T1-weighted brain MRIs from the Alzheimer's Disease Neuroimaging Initiative (ADNI)
- Score: 2.5855676778881334
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in MRI have led to the creation of large datasets. With the
increase in data volume, it has become difficult to locate previous scans of
the same patient within these datasets (a process known as re-identification).
To address this issue, we propose an AI-powered medical imaging retrieval
framework called DeepBrainPrint, which is designed to retrieve brain MRI scans
of the same patient. Our framework is a semi-self-supervised contrastive deep
learning approach with three main innovations. First, we use a combination of
self-supervised and supervised paradigms to create an effective brain
fingerprint from MRI scans that can be used for real-time image retrieval.
Second, we use a special weighting function to guide the training and improve
model convergence. Third, we introduce new imaging transformations to improve
retrieval robustness in the presence of intensity variations (i.e. different
scan contrasts), and to account for age and disease progression in patients. We
tested DeepBrainPrint on a large dataset of T1-weighted brain MRIs from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) and on a synthetic dataset
designed to evaluate retrieval performance with different image modalities. Our
results show that DeepBrainPrint outperforms previous methods, including simple
similarity metrics and more advanced contrastive deep learning frameworks.
Related papers
- Knowledge-Guided Prompt Learning for Lifespan Brain MR Image Segmentation [53.70131202548981]
We present a two-step segmentation framework employing Knowledge-Guided Prompt Learning (KGPL) for brain MRI.
Specifically, we first pre-train segmentation models on large-scale datasets with sub-optimal labels.
The introduction of knowledge-wise prompts captures semantic relationships between anatomical variability and biological processes.
arXiv Detail & Related papers (2024-07-31T04:32:43Z) - BrainSegFounder: Towards 3D Foundation Models for Neuroimage Segmentation [6.5388528484686885]
This study introduces a novel approach towards the creation of medical foundation models.
Our method involves a novel two-stage pretraining approach using vision transformers.
BrainFounder demonstrates a significant performance gain, surpassing the achievements of previous winning solutions.
arXiv Detail & Related papers (2024-06-14T19:49:45Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - Brain-ID: Learning Contrast-agnostic Anatomical Representations for
Brain Imaging [11.06907516321673]
We introduce Brain-ID, an anatomical representation learning model for brain imaging.
With the proposed "mild-to-severe" intrasubject generation, Brain-ID is robust to the subject-specific brain anatomy.
We present new metrics to validate the intra- and inter-subject robustness, and evaluate their performance on four downstream applications.
arXiv Detail & Related papers (2023-11-28T16:16:10Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Brain decoding: toward real-time reconstruction of visual perception [1.3654846342364308]
In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity.
Visual perception can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity.
Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution.
arXiv Detail & Related papers (2023-10-18T09:51:38Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain
Activities [31.448924808940284]
We introduce a two-phase fMRI representation learning framework.
The first phase pre-trains an fMRI feature learner with a proposed Double-contrastive Mask Auto-encoder to learn denoised representations.
The second phase tunes the feature learner to attend to neural activation patterns most informative for visual reconstruction with guidance from an image auto-encoder.
arXiv Detail & Related papers (2023-05-26T19:16:23Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.