Multimodal Speech Recognition for Language-Guided Embodied Agents
- URL: http://arxiv.org/abs/2302.14030v2
- Date: Wed, 31 May 2023 21:02:09 GMT
- Title: Multimodal Speech Recognition for Language-Guided Embodied Agents
- Authors: Allen Chang, Xiaoyuan Zhu, Aarav Monga, Seoho Ahn, Tejas Srinivasan,
Jesse Thomason
- Abstract summary: We propose training a multimodal ASR model to reduce errors in transcribing spoken instructions by considering the accompanying visual context.
We find that utilizing visual observations facilitates masked word recovery, with multimodal ASR models recovering up to 30% more masked words than unimodal baselines.
- Score: 5.464988285536847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benchmarks for language-guided embodied agents typically assume text-based
instructions, but deployed agents will encounter spoken instructions. While
Automatic Speech Recognition (ASR) models can bridge the input gap, erroneous
ASR transcripts can hurt the agents' ability to complete tasks. In this work,
we propose training a multimodal ASR model to reduce errors in transcribing
spoken instructions by considering the accompanying visual context. We train
our model on a dataset of spoken instructions, synthesized from the ALFRED task
completion dataset, where we simulate acoustic noise by systematically masking
spoken words. We find that utilizing visual observations facilitates masked
word recovery, with multimodal ASR models recovering up to 30% more masked
words than unimodal baselines. We also find that a text-trained embodied agent
successfully completes tasks more often by following transcribed instructions
from multimodal ASR models. github.com/Cylumn/embodied-multimodal-asr
Related papers
- Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)
We present a simple yet effective automatic process for creating speech-text pair data.
Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions [68.98811048970963]
We present a pioneering effort to investigate the capability of large language models (LLMs) in transcribing speech in multi-talker environments.
Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context.
Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios.
arXiv Detail & Related papers (2024-09-13T07:28:28Z) - Advancing Multi-talker ASR Performance with Large Language Models [48.52252970956368]
Recognizing overlapping speech from multiple speakers in conversational scenarios is one of the most challenging problem for automatic speech recognition (ASR)
In this paper, we propose an LLM-based SOT approach for multi-talker ASR, leveraging pre-trained speech encoder and LLM.
Our approach surpasses traditional AED-based methods on the simulated dataset LibriMix and achieves state-of-the-art performance on the evaluation set of the real-world dataset AMI.
arXiv Detail & Related papers (2024-08-30T17:29:25Z) - Discrete Multimodal Transformers with a Pretrained Large Language Model for Mixed-Supervision Speech Processing [17.92378239787507]
We present a decoder-only Discrete Multimodal Language Model (DMLM)
DMLM can be flexibly applied to multiple tasks (ASR, T2S, S2TT, etc.) and modalities (text, speech, vision)
Our results show that DMLM benefits significantly, across multiple tasks and datasets, from a combination of supervised and unsupervised training.
arXiv Detail & Related papers (2024-06-04T20:08:25Z) - Instruction-Following Speech Recognition [21.591086644665197]
We introduce instruction-following speech recognition, training a Listen-Attend-Spell model to understand and execute a diverse set of free-form text instructions.
Remarkably, our model, trained from scratch on Librispeech, interprets and executes simple instructions without requiring Large Language Models or pre-trained speech modules.
arXiv Detail & Related papers (2023-09-18T14:59:10Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
We propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model)
The proposed VATLM employs a unified backbone network to model the modality-independent information.
In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens.
arXiv Detail & Related papers (2022-11-21T09:10:10Z) - Bridging Speech and Textual Pre-trained Models with Unsupervised ASR [70.61449720963235]
This work proposes a simple yet efficient unsupervised paradigm that connects speech and textual pre-trained models.
We show that unsupervised automatic speech recognition (ASR) can improve the representations from speech self-supervised models.
Notably, on spoken question answering, we reach the state-of-the-art result over the challenging NMSQA benchmark.
arXiv Detail & Related papers (2022-11-06T04:50:37Z) - Improving Readability for Automatic Speech Recognition Transcription [50.86019112545596]
We propose a novel NLP task called ASR post-processing for readability (APR)
APR aims to transform the noisy ASR output into a readable text for humans and downstream tasks while maintaining the semantic meaning of the speaker.
We compare fine-tuned models based on several open-sourced and adapted pre-trained models with the traditional pipeline method.
arXiv Detail & Related papers (2020-04-09T09:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.