Query-optimal estimation of unitary channels in diamond distance
- URL: http://arxiv.org/abs/2302.14066v2
- Date: Mon, 29 Jul 2024 20:16:13 GMT
- Title: Query-optimal estimation of unitary channels in diamond distance
- Authors: Jeongwan Haah, Robin Kothari, Ryan O'Donnell, Ewin Tang,
- Abstract summary: We consider process tomography for unitary quantum channels.
We output a classical description of a unitary that is $varepsilon$-close to the unknown unitary in diamond norm.
- Score: 3.087385668501741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider process tomography for unitary quantum channels. Given access to an unknown unitary channel acting on a $\textsf{d}$-dimensional qudit, we aim to output a classical description of a unitary that is $\varepsilon$-close to the unknown unitary in diamond norm. We design an algorithm achieving error $\varepsilon$ using $O(\textsf{d}^2/\varepsilon)$ applications of the unknown channel and only one qudit. This improves over prior results, which use $O(\textsf{d}^3/\varepsilon^2)$ [via standard process tomography] or $O(\textsf{d}^{2.5}/\varepsilon)$ [Yang, Renner, and Chiribella, PRL 2020] applications. To show this result, we introduce a simple technique to "bootstrap" an algorithm that can produce constant-error estimates to one that can produce $\varepsilon$-error estimates with the Heisenberg scaling. Finally, we prove a complementary lower bound showing that estimation requires $\Omega(\textsf{d}^2/\varepsilon)$ applications, even with access to the inverse or controlled versions of the unknown unitary. This shows that our algorithm has both optimal query complexity and optimal space complexity.
Related papers
- Robust Sparse Regression with Non-Isotropic Designs [4.964650614497048]
We develop a technique to design efficiently computable estimators for sparse linear regression in the simultaneous presence of two adversaries.
We provide a novel analysis of weighted penalized Huber loss that is suitable for heavy-tailed designs in the presence of two adversaries.
arXiv Detail & Related papers (2024-10-31T13:51:59Z) - Quantum spectral method for gradient and Hessian estimation [4.193480001271463]
Gradient descent is one of the most basic algorithms for solving continuous optimization problems.
We propose a quantum algorithm that returns an $varepsilon$-approximation of its gradient with query complexity $widetildeO (1/varepsilon)$.
We also propose two quantum algorithms for Hessian estimation, aiming to improve quantum analogs of Newton's method.
arXiv Detail & Related papers (2024-07-04T11:03:48Z) - A shortcut to an optimal quantum linear system solver [55.2480439325792]
We give a conceptually simple quantum linear system solvers (QLSS) that does not use complex or difficult-to-analyze techniques.
If the solution norm $lVertboldsymbolxrVert$ is known exactly, our QLSS requires only a single application of kernel.
Alternatively, by reintroducing a concept from the adiabatic path-following technique, we show that $O(kappa)$ complexity can be achieved for norm estimation.
arXiv Detail & Related papers (2024-06-17T20:54:11Z) - Finding good policies in average-reward Markov Decision Processes without prior knowledge [19.89784209009327]
We revisit the identification of an $varepsilon$-optimal policy in average-reward Decision (MDP)
By relying on a diameter estimation procedure, we propose the first algorithm for $(varepsilon,delta)$-PAC-PAC policy identification.
arXiv Detail & Related papers (2024-05-27T12:24:14Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - Replicability in Reinforcement Learning [46.89386344741442]
We focus on the fundamental setting of discounted MDPs with access to a generative model.
Inspired by Impagliazzo et al. [2022], we say that an RL algorithm is replicable if, with high probability, it outputs the exact same policy after two executions.
arXiv Detail & Related papers (2023-05-31T05:16:23Z) - Unitarity estimation for quantum channels [7.323367190336826]
Unitarity estimation is a basic and important problem in quantum device certification and benchmarking.
We provide a unified framework for unitarity estimation, which induces ancilla-efficient algorithms.
We show that both the $d$-dependence and $epsilon$-dependence of our algorithms are optimal.
arXiv Detail & Related papers (2022-12-19T09:36:33Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Improved Sample Complexity for Incremental Autonomous Exploration in
MDPs [132.88757893161699]
We learn the set of $epsilon$-optimal goal-conditioned policies attaining all states that are incrementally reachable within $L$ steps.
DisCo is the first algorithm that can return an $epsilon/c_min$-optimal policy for any cost-sensitive shortest-path problem.
arXiv Detail & Related papers (2020-12-29T14:06:09Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Model-Free Reinforcement Learning: from Clipped Pseudo-Regret to Sample
Complexity [59.34067736545355]
Given an MDP with $S$ states, $A$ actions, the discount factor $gamma in (0,1)$, and an approximation threshold $epsilon > 0$, we provide a model-free algorithm to learn an $epsilon$-optimal policy.
For small enough $epsilon$, we show an improved algorithm with sample complexity.
arXiv Detail & Related papers (2020-06-06T13:34:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.