Efficient Masked Autoencoders with Self-Consistency
- URL: http://arxiv.org/abs/2302.14431v2
- Date: Mon, 3 Jun 2024 11:06:53 GMT
- Title: Efficient Masked Autoencoders with Self-Consistency
- Authors: Zhaowen Li, Yousong Zhu, Zhiyang Chen, Wei Li, Chaoyang Zhao, Rui Zhao, Ming Tang, Jinqiao Wang,
- Abstract summary: Masked image modeling (MIM) has been recognized as a strong self-supervised pre-training method in computer vision.
We propose efficient masked autoencoders with self-consistency (EMAE) to improve the pre-training efficiency.
EMAE consistently obtains state-of-the-art transfer ability on a variety of downstream tasks, such as image classification, object detection, and semantic segmentation.
- Score: 34.7076436760695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by the masked language modeling (MLM) in natural language processing tasks, the masked image modeling (MIM) has been recognized as a strong self-supervised pre-training method in computer vision. However, the high random mask ratio of MIM results in two serious problems: 1) the inadequate data utilization of images within each iteration brings prolonged pre-training, and 2) the high inconsistency of predictions results in unreliable generations, $i.e.$, the prediction of the identical patch may be inconsistent in different mask rounds, leading to divergent semantics in the ultimately generated outcomes. To tackle these problems, we propose the efficient masked autoencoders with self-consistency (EMAE) to improve the pre-training efficiency and increase the consistency of MIM. In particular, we present a parallel mask strategy that divides the image into K non-overlapping parts, each of which is generated by a random mask with the same mask ratio. Then the MIM task is conducted parallelly on all parts in an iteration and the model minimizes the loss between the predictions and the masked patches. Besides, we design the self-consistency learning to further maintain the consistency of predictions of overlapping masked patches among parts. Overall, our method is able to exploit the data more efficiently and obtains reliable representations. Experiments on ImageNet show that EMAE achieves the best performance on ViT-Large with only 13% of MAE pre-training time using NVIDIA A100 GPUs. After pre-training on diverse datasets, EMAE consistently obtains state-of-the-art transfer ability on a variety of downstream tasks, such as image classification, object detection, and semantic segmentation.
Related papers
- ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE) have emerged as a robust self-supervised framework.
We introduce a data-independent method, termed ColorMAE, which generates different binary mask patterns by filtering random noise.
We demonstrate our strategy's superiority in downstream tasks compared to random masking.
arXiv Detail & Related papers (2024-07-17T22:04:00Z) - Bringing Masked Autoencoders Explicit Contrastive Properties for Point Cloud Self-Supervised Learning [116.75939193785143]
Contrastive learning (CL) for Vision Transformers (ViTs) in image domains has achieved performance comparable to CL for traditional convolutional backbones.
In 3D point cloud pretraining with ViTs, masked autoencoder (MAE) modeling remains dominant.
arXiv Detail & Related papers (2024-07-08T12:28:56Z) - Learning to Mask and Permute Visual Tokens for Vision Transformer
Pre-Training [59.923672191632065]
We propose a new self-supervised pre-training approach, named Masked and Permuted Vision Transformer (MaPeT)
MaPeT employs autoregressive and permuted predictions to capture intra-patch dependencies.
Our results demonstrate that MaPeT achieves competitive performance on ImageNet.
arXiv Detail & Related papers (2023-06-12T18:12:19Z) - Mixed Autoencoder for Self-supervised Visual Representation Learning [95.98114940999653]
Masked Autoencoder (MAE) has demonstrated superior performance on various vision tasks via randomly masking image patches and reconstruction.
This paper studies the prevailing mixing augmentation for MAE.
arXiv Detail & Related papers (2023-03-30T05:19:43Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
Masked image modeling is a promising self-supervised learning method for visual data.
We present AutoMAE, a framework that uses Gumbel-Softmax to interlink an adversarially-trained mask generator and a mask-guided image modeling process.
In our experiments, AutoMAE is shown to provide effective pretraining models on standard self-supervised benchmarks and downstream tasks.
arXiv Detail & Related papers (2023-03-12T05:28:55Z) - Disjoint Masking with Joint Distillation for Efficient Masked Image
Modeling [36.231030262831005]
Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL)
We introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD)
arXiv Detail & Related papers (2022-12-31T15:50:02Z) - How Mask Matters: Towards Theoretical Understandings of Masked
Autoencoders [21.849681446573257]
Masked Autoencoders (MAE) based on a reconstruction task have risen to be a promising paradigm for self-supervised learning (SSL)
We propose a theoretical understanding of how masking matters for MAE to learn meaningful features.
arXiv Detail & Related papers (2022-10-15T17:36:03Z) - Masked Autoencoders Are Scalable Vision Learners [60.97703494764904]
Masked autoencoders (MAE) are scalable self-supervised learners for computer vision.
Our MAE approach is simple: we mask random patches of the input image and reconstruct the missing pixels.
Coupling these two designs enables us to train large models efficiently and effectively.
arXiv Detail & Related papers (2021-11-11T18:46:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.