Advance sharing of quantum shares for quantum secrets
- URL: http://arxiv.org/abs/2302.14448v1
- Date: Tue, 28 Feb 2023 09:51:57 GMT
- Title: Advance sharing of quantum shares for quantum secrets
- Authors: Mamoru Shibata and Ryutaroh Matsumoto
- Abstract summary: Secret sharing is a cryptographic scheme to encode a secret to multiple shares being distributed to participants.
We propose a quantum secret sharing scheme for quantum secrets that can distribute some shares before a given secret.
- Score: 2.2843885788439793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Secret sharing is a cryptographic scheme to encode a secret to multiple
shares being distributed to participants, so that only qualified sets of
participants can restore the original secret from their shares. When we encode
a secret by a secret sharing scheme and distribute shares, sometimes not all
participants are accessible, and it is desirable to distribute shares to those
participants before a secret information is determined. Secret sharing schemes
for classical secrets have been known to be able to distribute some shares
before a given secret. Lie et al. found any pure $(k,2k-1)$-threshold secret
sharing for quantum secrets can distribute some shares before a given secret.
However, it is unknown whether distributing some shares before a given secret
is possible with other access structures of secret sharing for quantum secrets.
We propose a quantum secret sharing scheme for quantum secrets that can
distribute some shares before a given secret with other access structures.
Related papers
- Advance Sharing Procedures for the Ramp Quantum Secret Sharing Schemes With the Highest Coding Rate [0.5439020425818999]
We propose methods to distribute some shares before a secret is given in ramp quantum secret sharing schemes.
We prove that our new encoding procedures retain the correspondences between quantum secrets and quantum shares in the original schemes.
arXiv Detail & Related papers (2024-07-30T08:54:44Z) - Unclonable Secret Sharing [18.564937506648622]
Unclonable cryptography utilizes the principles of quantum mechanics to addresses cryptographic tasks that are impossible classically.
We introduce a novel unclonable primitive in the context of secret sharing, called unclonable secret sharing (USS)
arXiv Detail & Related papers (2024-06-16T16:50:15Z) - Secret Sharing with Certified Deletion [4.082216579462796]
Secret sharing allows a user to split a secret into many shares so that the secret can be recovered if, and only if, an authorized set of shares is collected.
In secret sharing with certified deletion, a (classical) secret is split into quantum shares which can be verifiably destroyed.
We show how to construct (i) a secret sharing scheme with no-signaling certified deletion for any monotone access structure, and (ii) a threshold secret sharing scheme with adaptive certified deletion.
arXiv Detail & Related papers (2024-05-13T19:01:08Z) - Advance Sharing with Ogawa et al.'s Ramp Quantum Secret Sharing Scheme [0.4604003661048266]
We propose a method to distribute some shares before a secret is given in Ogawa et al.'s scheme.
We then determine a necessary and sufficient condition on sets of shares that can be distributed before a given secret.
arXiv Detail & Related papers (2024-04-24T04:58:31Z) - Experimental anonymous quantum conferencing [72.27323884094953]
We experimentally implement the AQCKA task in a six-user quantum network using Greenberger-Horne-Zeilinger (GHZ)-state entanglement.
We also demonstrate that the protocol retains an advantage in a four-user scenario with finite key effects taken into account.
arXiv Detail & Related papers (2023-11-23T19:00:01Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - ByzSecAgg: A Byzantine-Resistant Secure Aggregation Scheme for Federated
Learning Based on Coded Computing and Vector Commitment [90.60126724503662]
ByzSecAgg is an efficient secure aggregation scheme for federated learning.
ByzSecAgg is protected against Byzantine attacks and privacy leakages.
arXiv Detail & Related papers (2023-02-20T11:15:18Z) - Hiding Images in Deep Probabilistic Models [58.23127414572098]
We describe a different computational framework to hide images in deep probabilistic models.
Specifically, we use a DNN to model the probability density of cover images, and hide a secret image in one particular location of the learned distribution.
We demonstrate the feasibility of our SinGAN approach in terms of extraction accuracy and model security.
arXiv Detail & Related papers (2022-10-05T13:33:25Z) - Advance sharing of quantum shares for classical secrets [2.2843885788439793]
Secret sharing schemes for classical secrets can be classified into classical secret sharing schemes and quantum secret sharing schemes.
We propose quantum secret sharing with the capabilities in designing of access structures more flexibly.
arXiv Detail & Related papers (2022-08-03T05:25:19Z) - Unified Approach to Secret Sharing and Symmetric Private Information
Retrieval with Colluding Servers in Quantum Systems [71.78056556634196]
This paper unifiedly addresses two kinds of key quantum secure tasks, i.e., quantum versions of secret sharing (SS) and symmetric private information retrieval (SPIR)
In particular, two kinds of quantum extensions of SS are known; One is the classical-quantum (CQ) setting, in which the secret to be sent is classical information and the shares are quantum systems.
We newly introduce the third setting, i.e., the entanglement-assisted (EA) setting, which is defined by modifying the CQ setting with allowing prior entanglement between the dealer and the end-user who recovers the secret by
arXiv Detail & Related papers (2022-05-29T10:28:04Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.