DEff-GAN: Diverse Attribute Transfer for Few-Shot Image Synthesis
- URL: http://arxiv.org/abs/2302.14533v1
- Date: Tue, 28 Feb 2023 12:43:52 GMT
- Title: DEff-GAN: Diverse Attribute Transfer for Few-Shot Image Synthesis
- Authors: Rajiv Kumar, G. Sivakumar
- Abstract summary: We extend the single-image GAN method to model multiple images for sample synthesis.
Our Data-Efficient GAN (DEff-GAN) generates excellent results when similarities and correspondences can be drawn between the input images or classes.
- Score: 0.38073142980733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Requirements of large amounts of data is a difficulty in training many GANs.
Data efficient GANs involve fitting a generators continuous target distribution
with a limited discrete set of data samples, which is a difficult task. Single
image methods have focused on modeling the internal distribution of a single
image and generating its samples. While single image methods can synthesize
image samples with diversity, they do not model multiple images or capture the
inherent relationship possible between two images. Given only a handful of
images, we are interested in generating samples and exploiting the
commonalities in the input images. In this work, we extend the single-image GAN
method to model multiple images for sample synthesis. We modify the
discriminator with an auxiliary classifier branch, which helps to generate a
wide variety of samples and to classify the input labels. Our Data-Efficient
GAN (DEff-GAN) generates excellent results when similarities and
correspondences can be drawn between the input images or classes.
Related papers
- A Simple Approach to Unifying Diffusion-based Conditional Generation [63.389616350290595]
We introduce a simple, unified framework to handle diverse conditional generation tasks.
Our approach enables versatile capabilities via different inference-time sampling schemes.
Our model supports additional capabilities like non-spatially aligned and coarse conditioning.
arXiv Detail & Related papers (2024-10-15T09:41:43Z) - Glauber Generative Model: Discrete Diffusion Models via Binary Classification [21.816933208895843]
We introduce the Glauber Generative Model (GGM), a new class of discrete diffusion models.
GGM deploys a Markov chain to denoise a sequence of noisy tokens to a sample from a joint distribution of discrete tokens.
We show that it outperforms existing discrete diffusion models in language generation and image generation.
arXiv Detail & Related papers (2024-05-27T10:42:13Z) - Deep Generative Sampling in the Dual Divergence Space: A Data-efficient & Interpretative Approach for Generative AI [29.13807697733638]
We build on the remarkable achievements in generative sampling of natural images.
We propose an innovative challenge, potentially overly ambitious, which involves generating samples that resemble images.
The statistical challenge lies in the small sample size, sometimes consisting of a few hundred subjects.
arXiv Detail & Related papers (2024-04-10T22:35:06Z) - DREAM+: Efficient Dataset Distillation by Bidirectional Representative
Matching [40.18223537419178]
We propose a novel dataset matching strategy called DREAM+, which selects representative original images for bidirectional matching.
DREAM+ significantly reduces the number of distillation iterations by more than 15 times without affecting performance.
Given sufficient training time, DREAM+ can further improve the performance and achieve state-of-the-art results.
arXiv Detail & Related papers (2023-10-23T15:55:30Z) - Bridging the Gap between Synthetic and Authentic Images for Multimodal
Machine Translation [51.37092275604371]
Multimodal machine translation (MMT) simultaneously takes the source sentence and a relevant image as input for translation.
Recent studies suggest utilizing powerful text-to-image generation models to provide image inputs.
However, synthetic images generated by these models often follow different distributions compared to authentic images.
arXiv Detail & Related papers (2023-10-20T09:06:30Z) - Analog Bits: Generating Discrete Data using Diffusion Models with
Self-Conditioning [90.02873747873444]
Bit Diffusion is a generic approach for generating discrete data with continuous diffusion models.
The proposed approach can achieve strong performance in both discrete image generation and image captioning tasks.
For image captioning on MS-COCO dataset, our approach achieves competitive results compared to autoregressive models.
arXiv Detail & Related papers (2022-08-08T15:08:40Z) - FewGAN: Generating from the Joint Distribution of a Few Images [95.6635227371479]
We introduce FewGAN, a generative model for generating novel, high-quality and diverse images.
FewGAN is a hierarchical patch-GAN that applies quantization at the first coarse scale, followed by a pyramid of residual fully convolutional GANs at finer scales.
In an extensive set of experiments, it is shown that FewGAN outperforms baselines both quantitatively and qualitatively.
arXiv Detail & Related papers (2022-07-18T07:11:28Z) - Meta Internal Learning [88.68276505511922]
Internal learning for single-image generation is a framework, where a generator is trained to produce novel images based on a single image.
We propose a meta-learning approach that enables training over a collection of images, in order to model the internal statistics of the sample image more effectively.
Our results show that the models obtained are as suitable as single-image GANs for many common image applications.
arXiv Detail & Related papers (2021-10-06T16:27:38Z) - Diverse Semantic Image Synthesis via Probability Distribution Modeling [103.88931623488088]
We propose a novel diverse semantic image synthesis framework.
Our method can achieve superior diversity and comparable quality compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-03-11T18:59:25Z) - Training End-to-end Single Image Generators without GANs [27.393821783237186]
AugurOne is a novel approach for training single image generative models.
Our approach trains an upscaling neural network using non-affine augmentations of the (single) input image.
A compact latent space is jointly learned allowing for controlled image synthesis.
arXiv Detail & Related papers (2020-04-07T17:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.