Edit at your own risk: evaluating the robustness of edited models to
distribution shifts
- URL: http://arxiv.org/abs/2303.00046v2
- Date: Mon, 17 Jul 2023 21:31:34 GMT
- Title: Edit at your own risk: evaluating the robustness of edited models to
distribution shifts
- Authors: Davis Brown, Charles Godfrey, Cody Nizinski, Jonathan Tu, Henry Kvinge
- Abstract summary: We investigate how model editing affects the general robustness of a model, as well as the robustness of the specific behavior targeted by the edit.
We find that edits tend to reduce general robustness, but that the degree of degradation depends on the editing algorithm and layers chosen.
Motivated by these observations we introduce a new model editing algorithm, 1-layer (1-LI), which uses weight-space to navigate the trade-off between editing task accuracy and general robustness.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The current trend toward ever-larger models makes standard retraining
procedures an ever-more expensive burden. For this reason, there is growing
interest in model editing, which enables computationally inexpensive,
interpretable, post-hoc model modifications. While many model editing
techniques are promising, research on the properties of edited models is
largely limited to evaluation of validation accuracy. The robustness of edited
models is an important and yet mostly unexplored topic. In this paper, we
employ recently developed techniques from the field of deep learning robustness
to investigate both how model editing affects the general robustness of a
model, as well as the robustness of the specific behavior targeted by the edit.
We find that edits tend to reduce general robustness, but that the degree of
degradation depends on the editing algorithm and layers chosen. Motivated by
these observations we introduce a new model editing algorithm, 1-layer
interpolation (1-LI), which uses weight-space interpolation to navigate the
trade-off between editing task accuracy and general robustness.
Related papers
- Neuron-Level Sequential Editing for Large Language Models [19.324852774144752]
We introduce textbfNeuron-level textbfSequential textbfEditing (NSE) for supporting sequential model editing.
Specifically, we optimize the target layer's hidden states using the model's original weights to prevent model failure.
Our experiments demonstrate that NSE significantly outperforms current modifying parameters model editing methods.
arXiv Detail & Related papers (2024-10-05T05:52:22Z) - Better Call SAUL: Fluent and Consistent Language Model Editing with Generation Regularization [48.07144492109635]
Large language models need to be updated regularly.
Model editing is challenging as it might also affect knowledge that is unrelated to the new data.
We propose SAUL, a streamlined model editing method that uses sentence concatenation with augmented random facts for generation regularization.
arXiv Detail & Related papers (2024-10-03T12:28:13Z) - The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
Even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks.
benchmarking Large Language Models after each edit is impractically time-consuming and resource-intensive.
We have utilized GPT-3.5 to develop a new dataset, HardEdit, based on hard cases.
arXiv Detail & Related papers (2024-02-15T01:50:38Z) - Model Editing at Scale leads to Gradual and Catastrophic Forgetting [2.569159339315845]
We evaluate the current model editing methods at scale, focusing on two state of the art methods: ROME and MEMIT.
We find that as the model is edited sequentially with multiple facts, it continually forgets previously edited facts and the ability to perform downstream tasks.
arXiv Detail & Related papers (2024-01-15T03:57:15Z) - Model Editing Harms General Abilities of Large Language Models: Regularization to the Rescue [122.20016030723043]
We evaluate the side effects of model editing on large language models (LLMs)
Our analysis reveals that the side effects are caused by model editing altering the original model weights excessively.
To mitigate this, a method named RECT is proposed to regularize the edit update weights.
arXiv Detail & Related papers (2024-01-09T18:03:15Z) - Aging with GRACE: Lifelong Model Editing with Discrete Key-Value
Adaptors [53.819805242367345]
We propose GRACE, a lifelong model editing method, which implements spot-fixes on streaming errors of a deployed model.
GRACE writes new mappings into a pre-trained model's latent space, creating a discrete, local codebook of edits without altering model weights.
Our experiments on T5, BERT, and GPT models show GRACE's state-of-the-art performance in making and retaining edits, while generalizing to unseen inputs.
arXiv Detail & Related papers (2022-11-20T17:18:22Z) - Memory-Based Model Editing at Scale [102.28475739907498]
Existing model editors struggle to accurately model an edit's intended scope.
We propose Semi-Parametric Editing with a Retrieval-Augmented Counterfactual Model (SERAC)
SERAC stores edits in an explicit memory and learns to reason over them to modulate the base model's predictions as needed.
arXiv Detail & Related papers (2022-06-13T23:40:34Z) - Fast Model Editing at Scale [77.69220974621425]
We propose Model Editor Networks with Gradient Decomposition (MEND)
MEND is a collection of small auxiliary editing networks that use a single desired input-output pair to make fast, local edits to a pre-trained model.
MEND can be trained on a single GPU in less than a day even for 10 billion+ parameter models.
arXiv Detail & Related papers (2021-10-21T17:41:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.