A Practical Upper Bound for the Worst-Case Attribution Deviations
- URL: http://arxiv.org/abs/2303.00340v1
- Date: Wed, 1 Mar 2023 09:07:27 GMT
- Title: A Practical Upper Bound for the Worst-Case Attribution Deviations
- Authors: Fan Wang and Adams Wai-Kin Kong
- Abstract summary: Model attribution is a critical component of deep neural networks (DNNs) for its interpretability to complex models.
Recent studies bring up attention to the security of attribution methods as they are vulnerable to attribution attacks that generate similar images with dramatically different attributions.
Existing works have been investigating empirically improving the robustness of DNNs against those attacks; however, none of them explicitly quantifies the actual deviations of attributions.
In this work, for the first time, a constrained optimization problem is formulated to derive an upper bound that measures the largest dissimilarity of attributions after the samples are perturbed by any noises within a certain region
- Score: 21.341303776931532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model attribution is a critical component of deep neural networks (DNNs) for
its interpretability to complex models. Recent studies bring up attention to
the security of attribution methods as they are vulnerable to attribution
attacks that generate similar images with dramatically different attributions.
Existing works have been investigating empirically improving the robustness of
DNNs against those attacks; however, none of them explicitly quantifies the
actual deviations of attributions. In this work, for the first time, a
constrained optimization problem is formulated to derive an upper bound that
measures the largest dissimilarity of attributions after the samples are
perturbed by any noises within a certain region while the classification
results remain the same. Based on the formulation, different practical
approaches are introduced to bound the attributions above using Euclidean
distance and cosine similarity under both $\ell_2$ and $\ell_\infty$-norm
perturbations constraints. The bounds developed by our theoretical study are
validated on various datasets and two different types of attacks (PGD attack
and IFIA attribution attack). Over 10 million attacks in the experiments
indicate that the proposed upper bounds effectively quantify the robustness of
models based on the worst-case attribution dissimilarities.
Related papers
- Indiscriminate Disruption of Conditional Inference on Multivariate Gaussians [60.22542847840578]
Despite advances in adversarial machine learning, inference for Gaussian models in the presence of an adversary is notably understudied.
We consider a self-interested attacker who wishes to disrupt a decisionmaker's conditional inference and subsequent actions by corrupting a set of evidentiary variables.
To avoid detection, the attacker also desires the attack to appear plausible wherein plausibility is determined by the density of the corrupted evidence.
arXiv Detail & Related papers (2024-11-21T17:46:55Z) - The Surprising Harmfulness of Benign Overfitting for Adversarial
Robustness [13.120373493503772]
We prove a surprising result that even if the ground truth itself is robust to adversarial examples, the benignly overfitted model is benign in terms of the standard'' out-of-sample risk objective.
Our finding provides theoretical insights into the puzzling phenomenon observed in practice, where the true target function (e.g., human) is robust against adverasrial attack, while beginly overfitted neural networks lead to models that are not robust.
arXiv Detail & Related papers (2024-01-19T15:40:46Z) - Adversarial Examples Detection with Enhanced Image Difference Features
based on Local Histogram Equalization [20.132066800052712]
We propose an adversarial example detection framework based on a high-frequency information enhancement strategy.
This framework can effectively extract and amplify the feature differences between adversarial examples and normal examples.
arXiv Detail & Related papers (2023-05-08T03:14:01Z) - Latent Feature Relation Consistency for Adversarial Robustness [80.24334635105829]
misclassification will occur when deep neural networks predict adversarial examples which add human-imperceptible adversarial noise to natural examples.
We propose textbfLatent textbfFeature textbfRelation textbfConsistency (textbfLFRC)
LFRC constrains the relation of adversarial examples in latent space to be consistent with the natural examples.
arXiv Detail & Related papers (2023-03-29T13:50:01Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - A New Central Limit Theorem for the Augmented IPW Estimator: Variance
Inflation, Cross-Fit Covariance and Beyond [0.9172870611255595]
Cross-fit inverse probability weighting (AIPW) with cross-fitting is a popular choice in practice.
We study this cross-fit AIPW estimator under well-specified outcome regression and propensity score models in a high-dimensional regime.
Our work utilizes a novel interplay between three distinct tools--approximate message passing theory, the theory of deterministic equivalents, and the leave-one-out approach.
arXiv Detail & Related papers (2022-05-20T14:17:53Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Asymptotic Behavior of Adversarial Training in Binary Classification [41.7567932118769]
Adversarial training is considered to be the state-of-the-art method for defense against adversarial attacks.
Despite being successful in practice, several problems in understanding performance of adversarial training remain open.
We derive precise theoretical predictions for the minimization of adversarial training in binary classification.
arXiv Detail & Related papers (2020-10-26T01:44:20Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.