Improving Model's Focus Improves Performance of Deep Learning-Based
Synthetic Face Detectors
- URL: http://arxiv.org/abs/2303.00818v1
- Date: Wed, 1 Mar 2023 20:39:46 GMT
- Title: Improving Model's Focus Improves Performance of Deep Learning-Based
Synthetic Face Detectors
- Authors: Jacob Piland, Adam Czajka, and Christopher Sweet
- Abstract summary: We show that improving the model's focus, through lowering entropy, leads to models that perform better in an open-set scenario.
We also show that optimal performance is obtained when the model's loss function blends three aspects: regular classification, low-entropy of the model's focus, and human-guided saliency.
- Score: 3.37387505927931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based models generalize better to unknown data samples after
being guided "where to look" by incorporating human perception into training
strategies. We made an observation that the entropy of the model's salience
trained in that way is lower when compared to salience entropy computed for
models training without human perceptual intelligence. Thus the question: does
further increase of model's focus, by lowering the entropy of model's class
activation map, help in further increasing the performance? In this paper we
propose and evaluate several entropy-based new loss function components
controlling the model's focus, covering the full range of the level of such
control, from none to its "aggressive" minimization. We show, using a problem
of synthetic face detection, that improving the model's focus, through lowering
entropy, leads to models that perform better in an open-set scenario, in which
the test samples are synthesized by unknown generative models. We also show
that optimal performance is obtained when the model's loss function blends
three aspects: regular classification, low-entropy of the model's focus, and
human-guided saliency.
Related papers
- Contour Integration Underlies Human-Like Vision [2.6716072974490794]
Humans perform at high accuracy, even with few object contours present.
Humans exhibit an integration bias -- a preference towards recognizing objects made up of directional fragments over directionless fragments.
arXiv Detail & Related papers (2025-04-07T16:45:06Z) - LoRE-Merging: Exploring Low-Rank Estimation For Large Language Model Merging [10.33844295243509]
We propose a unified framework for model merging based on low-rank estimation of task vectors without the need for access to the base model, named textscLoRE-Merging.
Our approach is motivated by the observation that task vectors from fine-tuned models frequently exhibit a limited number of dominant singular values, making low-rank estimations less prone to interference.
arXiv Detail & Related papers (2025-02-15T10:18:46Z) - Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
We propose a Supervised Score-based Model (SSM) which can be viewed as a gradient boosting algorithm combining score matching.
We provide a theoretical analysis of learning and sampling for SSM to balance inference time and prediction accuracy.
Our model outperforms existing models in both accuracy and inference time.
arXiv Detail & Related papers (2024-11-02T07:06:53Z) - Strong Model Collapse [16.071600606637908]
We consider a supervised regression setting and establish the existance of a strong form of the model collapse phenomenon.
Our results show that even the smallest fraction of synthetic data can lead to model collapse.
We investigate whether increasing model size, an approach aligned with current trends in training large language models, exacerbates or mitigates model collapse.
arXiv Detail & Related papers (2024-10-07T08:54:23Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment [32.752633250862694]
Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data.
We introduce a new framework, Reward rAnked FineTuning, designed to align generative models effectively.
arXiv Detail & Related papers (2023-04-13T18:22:40Z) - Learned Vertex Descent: A New Direction for 3D Human Model Fitting [64.04726230507258]
We propose a novel optimization-based paradigm for 3D human model fitting on images and scans.
Our approach is able to capture the underlying body of clothed people with very different body shapes, achieving a significant improvement compared to state-of-the-art.
LVD is also applicable to 3D model fitting of humans and hands, for which we show a significant improvement to the SOTA with a much simpler and faster method.
arXiv Detail & Related papers (2022-05-12T17:55:51Z) - Sample Efficient Reinforcement Learning via Model-Ensemble Exploration
and Exploitation [3.728946517493471]
MEEE is a model-ensemble method that consists of optimistic exploration and weighted exploitation.
Our approach outperforms other model-free and model-based state-of-the-art methods, especially in sample complexity.
arXiv Detail & Related papers (2021-07-05T07:18:20Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
We show that simple model-based agents can outperform state-of-the-art model-free agents in terms of both sample-efficiency and final reward.
Our findings suggest that model-based policy evaluation deserves closer attention.
arXiv Detail & Related papers (2020-08-28T17:58:29Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z) - Maximum Entropy Model Rollouts: Fast Model Based Policy Optimization
without Compounding Errors [10.906666680425754]
We propose a Dyna-style model-based reinforcement learning algorithm, which we called Maximum Entropy Model Rollouts (MEMR)
To eliminate the compounding errors, we only use our model to generate single-step rollouts.
arXiv Detail & Related papers (2020-06-08T21:38:15Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.