Comparison of High-Dimensional Bayesian Optimization Algorithms on BBOB
- URL: http://arxiv.org/abs/2303.00890v3
- Date: Sun, 23 Jun 2024 13:13:47 GMT
- Title: Comparison of High-Dimensional Bayesian Optimization Algorithms on BBOB
- Authors: Maria Laura Santoni, Elena Raponi, Renato De Leone, Carola Doerr,
- Abstract summary: We compare five state-of-the-art high-dimensional BO algorithms, with vanilla and CMA-ES, at increasing dimensionality, ranging from 10 to 60 variables.
Our results confirm the superiority of BO over CMA-ES for limited evaluation budgets.
- Score: 0.40498500266986387
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian Optimization (BO) is a class of black-box, surrogate-based heuristics that can efficiently optimize problems that are expensive to evaluate, and hence admit only small evaluation budgets. BO is particularly popular for solving numerical optimization problems in industry, where the evaluation of objective functions often relies on time-consuming simulations or physical experiments. However, many industrial problems depend on a large number of parameters. This poses a challenge for BO algorithms, whose performance is often reported to suffer when the dimension grows beyond 15 variables. Although many new algorithms have been proposed to address this problem, it is not well understood which one is the best for which optimization scenario. In this work, we compare five state-of-the-art high-dimensional BO algorithms, with vanilla BO and CMA-ES on the 24 BBOB functions of the COCO environment at increasing dimensionality, ranging from 10 to 60 variables. Our results confirm the superiority of BO over CMA-ES for limited evaluation budgets and suggest that the most promising approach to improve BO is the use of trust regions. However, we also observe significant performance differences for different function landscapes and budget exploitation phases, indicating improvement potential, e.g., through hybridization of algorithmic components.
Related papers
- Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
We introduce utility, which is a function predefined by each user and describes the trade-off between cost and performance of BO.
We validate our algorithm on various LC datasets and found it outperform all the previous multi-fidelity BO and transfer-BO baselines we consider.
arXiv Detail & Related papers (2024-05-28T07:38:39Z) - LABCAT: Locally adaptive Bayesian optimization using principal-component-aligned trust regions [0.0]
We propose the LABCAT algorithm, which extends trust-region-based BO.
We show that the algorithm outperforms several state-of-the-art BO and other black-box optimization algorithms.
arXiv Detail & Related papers (2023-11-19T13:56:24Z) - Optimizing with Low Budgets: a Comparison on the Black-box Optimization
Benchmarking Suite and OpenAI Gym [2.511157007295545]
Black-box optimization (BO) algorithms are popular in machine learning (ML)
We compare BBO tools for ML with more classical COCOs.
Some algorithms from the BBO community perform surprisingly well on ML tasks.
arXiv Detail & Related papers (2023-09-29T18:33:10Z) - Non-Convex Bilevel Optimization with Time-Varying Objective Functions [57.299128109226025]
We propose an online bilevel optimization where the functions can be time-varying and the agent continuously updates the decisions with online data.
Compared to existing algorithms, SOBOW is computationally efficient and does not need to know previous functions.
We show that SOBOW can achieve a sublinear bilevel local regret under mild conditions.
arXiv Detail & Related papers (2023-08-07T06:27:57Z) - Large-Batch, Iteration-Efficient Neural Bayesian Design Optimization [37.339567743948955]
We present a novel Bayesian optimization framework specifically tailored to address the limitations of BO.
Our key contribution is a highly scalable, sample-based acquisition function that performs a non-dominated sorting of objectives.
We show that our acquisition function in combination with different Bayesian neural network surrogates is effective in data-intensive environments with a minimal number of iterations.
arXiv Detail & Related papers (2023-06-01T19:10:57Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - MBORE: Multi-objective Bayesian Optimisation by Density-Ratio Estimation [0.01652719262940403]
optimisation problems often have multiple conflicting objectives that can be computationally and/or financially expensive.
Mono-surrogate Bayesian optimisation (BO) is a popular model-based approach for optimising such black-box functions.
We extend previous work on BO by density-ratio estimation (BORE) to the multi-objective setting.
arXiv Detail & Related papers (2022-03-31T09:27:59Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - Revisiting Bayesian Optimization in the light of the COCO benchmark [1.4467794332678539]
This article reports a large investigation about the effects on the performance of (Gaussian process based) BO of common and less common design choices.
The code developed for this study makes the new version (v2.1.1) of the R package DiceOptim available on CRAN.
arXiv Detail & Related papers (2021-03-30T19:45:18Z) - Sub-linear Regret Bounds for Bayesian Optimisation in Unknown Search
Spaces [63.22864716473051]
We propose a novel BO algorithm which expands (and shifts) the search space over iterations.
We show theoretically that for both our algorithms, the cumulative regret grows at sub-linear rates.
arXiv Detail & Related papers (2020-09-05T14:24:40Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.