Node Embedding from Hamiltonian Information Propagation in Graph Neural
Networks
- URL: http://arxiv.org/abs/2303.01030v1
- Date: Thu, 2 Mar 2023 07:40:40 GMT
- Title: Node Embedding from Hamiltonian Information Propagation in Graph Neural
Networks
- Authors: Qiyu Kang, Kai Zhao, Yang Song, Sijie Wang, Rui She, and Wee Peng Tay
- Abstract summary: We propose a novel graph information propagation strategy called Hamiltonian Dynamic GNN (HDG)
HDG uses a Hamiltonian mechanics approach to learn node embeddings in a graph.
We demonstrate the ability of HDG to automatically learn the underlying geometry of graph datasets.
- Score: 30.42111062496152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have achieved success in various inference tasks
on graph-structured data. However, common challenges faced by many GNNs in the
literature include the problem of graph node embedding under various geometries
and the over-smoothing problem. To address these issues, we propose a novel
graph information propagation strategy called Hamiltonian Dynamic GNN (HDG)
that uses a Hamiltonian mechanics approach to learn node embeddings in a graph.
The Hamiltonian energy function in HDG is learnable and can adapt to the
underlying geometry of any given graph dataset. We demonstrate the ability of
HDG to automatically learn the underlying geometry of graph datasets, even
those with complex and mixed geometries, through comprehensive evaluations
against state-of-the-art baselines on various downstream tasks. We also verify
that HDG is stable against small perturbations and can mitigate the
over-smoothing problem when stacking many layers.
Related papers
- DeepRicci: Self-supervised Graph Structure-Feature Co-Refinement for
Alleviating Over-squashing [72.70197960100677]
Graph Structure Learning (GSL) plays an important role in boosting Graph Neural Networks (GNNs) with a refined graph.
GSL solutions usually focus on structure refinement with task-specific supervision (i.e., node classification) or overlook the inherent weakness of GNNs themselves.
We propose to study self-supervised graph structure-feature co-refinement for effectively alleviating the issue of over-squashing in typical GNNs.
arXiv Detail & Related papers (2024-01-23T14:06:08Z) - Implicit Graph Neural Diffusion Networks: Convergence, Generalization,
and Over-Smoothing [7.984586585987328]
Implicit Graph Neural Networks (GNNs) have achieved significant success in addressing graph learning problems.
We introduce a geometric framework for designing implicit graph diffusion layers based on a parameterized graph Laplacian operator.
We show how implicit GNN layers can be viewed as the fixed-point equation of a Dirichlet energy minimization problem.
arXiv Detail & Related papers (2023-08-07T05:22:33Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Node Embedding from Neural Hamiltonian Orbits in Graph Neural Networks [33.88288279902204]
In this paper, we model the embedding update of a node feature as a Hamiltonian orbit over time.
Our proposed node embedding strategy can automatically learn, without extensive tuning, the underlying geometry of any given graph dataset.
Numerical experiments demonstrate that our approach adapts better to different types of graph datasets than popular state-of-the-art graph node embedding GNNs.
arXiv Detail & Related papers (2023-05-30T11:53:40Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - FoSR: First-order spectral rewiring for addressing oversquashing in GNNs [0.0]
Graph neural networks (GNNs) are able to leverage the structure of graph data by passing messages along the edges of the graph.
We propose a computationally efficient algorithm that prevents oversquashing by systematically adding edges to the graph.
We find experimentally that our algorithm outperforms existing graph rewiring methods in several graph classification tasks.
arXiv Detail & Related papers (2022-10-21T07:58:03Z) - Graph Anomaly Detection with Graph Neural Networks: Current Status and
Challenges [9.076649460696402]
Graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks.
This survey is the first comprehensive review of graph anomaly detection methods based on GNNs.
arXiv Detail & Related papers (2022-09-29T16:47:57Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - Graph Entropy Guided Node Embedding Dimension Selection for Graph Neural
Networks [74.26734952400925]
We propose a novel Minimum Graph Entropy (MinGE) algorithm for Node Embedding Dimension Selection (NEDS)
MinGE considers both feature entropy and structure entropy on graphs, which are carefully designed according to the characteristics of the rich information in them.
Experiments with popular Graph Neural Networks (GNNs) on benchmark datasets demonstrate the effectiveness and generalizability of our proposed MinGE.
arXiv Detail & Related papers (2021-05-07T11:40:29Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
We propose a novel geometric aggregation scheme for graph neural networks to overcome the two weaknesses.
The proposed aggregation scheme is permutation-invariant and consists of three modules, node embedding, structural neighborhood, and bi-level aggregation.
We also present an implementation of the scheme in graph convolutional networks, termed Geom-GCN, to perform transductive learning on graphs.
arXiv Detail & Related papers (2020-02-13T00:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.