CTRLStruct: Dialogue Structure Learning for Open-Domain Response
Generation
- URL: http://arxiv.org/abs/2303.01094v1
- Date: Thu, 2 Mar 2023 09:27:11 GMT
- Title: CTRLStruct: Dialogue Structure Learning for Open-Domain Response
Generation
- Authors: Congchi Yin, Piji Li and Zhaochun Ren
- Abstract summary: Well-structured topic flow can leverage background information and predict future topics to help generate controllable and explainable responses.
We present a new framework for dialogue structure learning to effectively explore topic-level dialogue clusters as well as their transitions with unlabelled information.
Experiments on two popular open-domain dialogue datasets show our model can generate more coherent responses compared to some excellent dialogue models.
- Score: 38.60073402817218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dialogue structure discovery is essential in dialogue generation.
Well-structured topic flow can leverage background information and predict
future topics to help generate controllable and explainable responses. However,
most previous work focused on dialogue structure learning in task-oriented
dialogue other than open-domain dialogue which is more complicated and
challenging. In this paper, we present a new framework CTRLStruct for dialogue
structure learning to effectively explore topic-level dialogue clusters as well
as their transitions with unlabelled information. Precisely, dialogue
utterances encoded by bi-directional Transformer are further trained through a
special designed contrastive learning task to improve representation. Then we
perform clustering to utterance-level representations and form topic-level
clusters that can be considered as vertices in dialogue structure graph. The
edges in the graph indicating transition probability between vertices are
calculated by mimicking expert behavior in datasets. Finally, dialogue
structure graph is integrated into dialogue model to perform controlled
response generation. Experiments on two popular open-domain dialogue datasets
show our model can generate more coherent responses compared to some excellent
dialogue models, as well as outperform some typical sentence embedding methods
in dialogue utterance representation. Code is available in GitHub.
Related papers
- A Static and Dynamic Attention Framework for Multi Turn Dialogue Generation [37.79563028123686]
In open domain multi turn dialogue generation, it is essential to modeling the contextual semantics of the dialogue history.
Previous research had verified the effectiveness of the hierarchical recurrent encoder-decoder framework on open domain multi turn dialogue generation.
We propose a static and dynamic attention-based approach to model the dialogue history and then generate open domain multi turn dialogue responses.
arXiv Detail & Related papers (2024-10-28T06:05:34Z) - Unsupervised Extraction of Dialogue Policies from Conversations [3.102576158218633]
We show how Large Language Models can be instrumental in extracting dialogue policies from datasets.
We then propose a novel method for generating dialogue policies utilizing a controllable and interpretable graph-based methodology.
arXiv Detail & Related papers (2024-06-21T14:57:25Z) - SuperDialseg: A Large-scale Dataset for Supervised Dialogue Segmentation [55.82577086422923]
We provide a feasible definition of dialogue segmentation points with the help of document-grounded dialogues.
We release a large-scale supervised dataset called SuperDialseg, containing 9,478 dialogues.
We also provide a benchmark including 18 models across five categories for the dialogue segmentation task.
arXiv Detail & Related papers (2023-05-15T06:08:01Z) - Structure Extraction in Task-Oriented Dialogues with Slot Clustering [94.27806592467537]
In task-oriented dialogues, dialogue structure has often been considered as transition graphs among dialogue states.
We propose a simple yet effective approach for structure extraction in task-oriented dialogues.
arXiv Detail & Related papers (2022-02-28T20:18:12Z) - Graph Based Network with Contextualized Representations of Turns in
Dialogue [0.0]
Dialogue-based relation extraction (RE) aims to extract relation(s) between two arguments that appear in a dialogue.
We propose the TUrn COntext awaRE Graph Convolutional Network (TUCORE-GCN) modeled by paying attention to the way people understand dialogues.
arXiv Detail & Related papers (2021-09-09T03:09:08Z) - Discovering Dialog Structure Graph for Open-Domain Dialog Generation [51.29286279366361]
We conduct unsupervised discovery of dialog structure from chitchat corpora.
We then leverage it to facilitate dialog generation in downstream systems.
We present a Discrete Variational Auto-Encoder with Graph Neural Network (DVAE-GNN), to discover a unified human-readable dialog structure.
arXiv Detail & Related papers (2020-12-31T10:58:37Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
In multi-turn dialog, utterances do not always take the full form of sentences.
We propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question.
arXiv Detail & Related papers (2020-12-14T10:58:01Z) - Structured Attention for Unsupervised Dialogue Structure Induction [110.12561786644122]
We propose to incorporate structured attention layers into a Variational Recurrent Neural Network (VRNN) model with discrete latent states to learn dialogue structure in an unsupervised fashion.
Compared to a vanilla VRNN, structured attention enables a model to focus on different parts of the source sentence embeddings while enforcing a structural inductive bias.
arXiv Detail & Related papers (2020-09-17T23:07:03Z) - Variational Hierarchical Dialog Autoencoder for Dialog State Tracking
Data Augmentation [59.174903564894954]
In this work, we extend this approach to the task of dialog state tracking for goal-oriented dialogs.
We propose the Variational Hierarchical Dialog Autoencoder (VHDA) for modeling the complete aspects of goal-oriented dialogs.
Experiments on various dialog datasets show that our model improves the downstream dialog trackers' robustness via generative data augmentation.
arXiv Detail & Related papers (2020-01-23T15:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.