Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement
- URL: http://arxiv.org/abs/2303.02091v2
- Date: Sat, 19 Aug 2023 09:42:39 GMT
- Title: Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement
- Authors: Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Errui Ding,
Jingdong Wang, Gang Zeng
- Abstract summary: We present a novel framework that generates textured surface meshes from images.
Our approach begins by efficiently initializing the geometry and view-dependency appearance with a NeRF.
We jointly refine the appearance with geometry and bake it into texture images for real-time rendering.
- Score: 78.48648360358193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRF) have constituted a remarkable breakthrough in
image-based 3D reconstruction. However, their implicit volumetric
representations differ significantly from the widely-adopted polygonal meshes
and lack support from common 3D software and hardware, making their rendering
and manipulation inefficient. To overcome this limitation, we present a novel
framework that generates textured surface meshes from images. Our approach
begins by efficiently initializing the geometry and view-dependency decomposed
appearance with a NeRF. Subsequently, a coarse mesh is extracted, and an
iterative surface refining algorithm is developed to adaptively adjust both
vertex positions and face density based on re-projected rendering errors. We
jointly refine the appearance with geometry and bake it into texture images for
real-time rendering. Extensive experiments demonstrate that our method achieves
superior mesh quality and competitive rendering quality.
Related papers
- AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
We present AniSDF, a novel approach that learns fused-granularity neural surfaces with physics-based encoding for high-fidelity 3D reconstruction.
Our method boosts the quality of SDF-based methods by a great scale in both geometry reconstruction and novel-view synthesis.
arXiv Detail & Related papers (2024-10-02T03:10:38Z) - $R^2$-Mesh: Reinforcement Learning Powered Mesh Reconstruction via Geometry and Appearance Refinement [5.810659946867557]
Mesh reconstruction based on Neural Radiance Fields (NeRF) is popular in a variety of applications such as computer graphics, virtual reality, and medical imaging.
We propose a novel algorithm that progressively generates and optimize meshes from multi-view images.
Our method delivers highly competitive and robust performance in both mesh rendering quality and geometric quality.
arXiv Detail & Related papers (2024-08-19T16:33:17Z) - Learning Topology Uniformed Face Mesh by Volume Rendering for Multi-view Reconstruction [40.45683488053611]
Face meshes in consistent topology serve as the foundation for many face-related applications.
We propose a mesh volume rendering method that enables directly optimizing mesh geometry while preserving topology.
Key innovation lies in spreading sparse mesh features into the surrounding space to simulate radiance field required for volume rendering.
arXiv Detail & Related papers (2024-04-08T15:25:50Z) - FlexiDreamer: Single Image-to-3D Generation with FlexiCubes [20.871847154995688]
FlexiDreamer is a novel framework that directly reconstructs high-quality meshes from multi-view generated images.
Our approach can generate high-fidelity 3D meshes in the single image-to-3D downstream task with approximately 1 minute.
arXiv Detail & Related papers (2024-04-01T08:20:18Z) - NeuManifold: Neural Watertight Manifold Reconstruction with Efficient
and High-Quality Rendering Support [45.68296352822415]
We present a method for generating high-quality watertight manifold meshes from multi-view input images.
Our method combines the benefits of both worlds; we take the geometry obtained from neural fields, and further optimize the geometry as well as a compact neural texture representation.
arXiv Detail & Related papers (2023-05-26T17:59:21Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
We present a framework, called MVG-NeRF, that combines Multi-View Geometry algorithms and Neural Radiance Fields (NeRF) for image-based 3D reconstruction.
NeRF has revolutionized the field of implicit 3D representations, mainly due to a differentiable rendering formulation that enables high-quality and geometry-aware novel view synthesis.
arXiv Detail & Related papers (2022-10-24T08:53:35Z) - IRON: Inverse Rendering by Optimizing Neural SDFs and Materials from
Photometric Images [52.021529273866896]
We propose a neural inverse rendering pipeline called IRON that operates on photometric images and outputs high-quality 3D content.
Our method adopts neural representations for geometry as signed distance fields (SDFs) and materials during optimization to enjoy their flexibility and compactness.
We show that our IRON achieves significantly better inverse rendering quality compared to prior works.
arXiv Detail & Related papers (2022-04-05T14:14:18Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
We harness the power of Generative Adversarial Networks (GANs) and Deep Convolutional Neural Networks (DCNNs) to reconstruct the facial texture and shape from single images.
We demonstrate excellent results in photorealistic and identity preserving 3D face reconstructions and achieve for the first time, facial texture reconstruction with high-frequency details.
arXiv Detail & Related papers (2021-05-16T16:35:44Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.