Causal Deep Learning
- URL: http://arxiv.org/abs/2303.02186v2
- Date: Wed, 14 Feb 2024 10:30:13 GMT
- Title: Causal Deep Learning
- Authors: Jeroen Berrevoets, Krzysztof Kacprzyk, Zhaozhi Qian, Mihaela van der
Schaar
- Abstract summary: Causality has the potential to transform the way we solve real-world problems.
But causality often requires crucial assumptions which cannot be tested in practice.
We propose a new way of thinking about causality -- we call this causal deep learning.
- Score: 77.49632479298745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causality has the potential to truly transform the way we solve a large
number of real-world problems. Yet, so far, its potential largely remains to be
unlocked as causality often requires crucial assumptions which cannot be tested
in practice. To address this challenge, we propose a new way of thinking about
causality -- we call this causal deep learning. Our causal deep learning
framework spans three dimensions: (1) a structural dimension, which
incorporates partial yet testable causal knowledge rather than assuming either
complete or no causal knowledge among the variables of interest; (2) a
parametric dimension, which encompasses parametric forms that capture the type
of relationships among the variables of interest; and (3) a temporal dimension,
which captures exposure times or how the variables of interest interact
(possibly causally) over time. Causal deep learning enables us to make progress
on a variety of real-world problems by leveraging partial causal knowledge
(including independencies among variables) and quantitatively characterising
causal relationships among variables of interest (possibly over time). Our
framework clearly identifies which assumptions are testable and which ones are
not, such that the resulting solutions can be judiciously adopted in practice.
Using our formulation we can combine or chain together causal representations
to solve specific problems without losing track of which assumptions are
required to build these solutions, pushing real-world impact in healthcare,
economics and business, environmental sciences and education, through causal
deep learning.
Related papers
- Unsupervised Pairwise Causal Discovery on Heterogeneous Data using Mutual Information Measures [49.1574468325115]
Causal Discovery is a technique that tackles the challenge by analyzing the statistical properties of the constituent variables.
We question the current (possibly misleading) baseline results on the basis that they were obtained through supervised learning.
In consequence, we approach this problem in an unsupervised way, using robust Mutual Information measures.
arXiv Detail & Related papers (2024-08-01T09:11:08Z) - Emergence and Causality in Complex Systems: A Survey on Causal Emergence
and Related Quantitative Studies [12.78006421209864]
Causal emergence theory employs measures of causality to quantify emergence.
Two key problems are addressed: quantifying causal emergence and identifying it in data.
We highlighted that the architectures used for identifying causal emergence are shared by causal representation learning, causal model abstraction, and world model-based reinforcement learning.
arXiv Detail & Related papers (2023-12-28T04:20:46Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discovery aims to find automated search methods for learning causal structures from observational data.
This thesis focuses on two questions in causal discovery: (i) providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, and (ii) under the assumption that the modified version of Strong Faithfulness holds.
arXiv Detail & Related papers (2023-08-15T01:23:42Z) - Causal Reinforcement Learning: A Survey [57.368108154871]
Reinforcement learning is an essential paradigm for solving sequential decision problems under uncertainty.
One of the main obstacles is that reinforcement learning agents lack a fundamental understanding of the world.
Causality offers a notable advantage as it can formalize knowledge in a systematic manner.
arXiv Detail & Related papers (2023-07-04T03:00:43Z) - A Conceptual Model for End-to-End Causal Discovery in Knowledge Tracing [8.049552839071918]
We take a preliminary step towards solving the problem of causal discovery in knowledge tracing.
Our solution placed among the top entries in Task 3 of the NeurIPS 2022 Challenge on Causal Insights for Learning Paths in Education.
arXiv Detail & Related papers (2023-05-11T21:20:29Z) - Deep Causal Learning: Representation, Discovery and Inference [2.696435860368848]
Causal learning reveals the essential relationships that underpin phenomena and delineates the mechanisms by which the world evolves.
Traditional causal learning methods face numerous challenges and limitations, including high-dimensional variables, unstructured variables, optimization problems, unobserved confounders, selection biases, and estimation inaccuracies.
Deep causal learning, which leverages deep neural networks, offers innovative insights and solutions for addressing these challenges.
arXiv Detail & Related papers (2022-11-07T09:00:33Z) - Constrained Learning with Non-Convex Losses [119.8736858597118]
Though learning has become a core technology of modern information processing, there is now ample evidence that it can lead to biased, unsafe, and prejudiced solutions.
arXiv Detail & Related papers (2021-03-08T23:10:33Z) - Towards Causal Representation Learning [96.110881654479]
The two fields of machine learning and graphical causality arose and developed separately.
There is now cross-pollination and increasing interest in both fields to benefit from the advances of the other.
arXiv Detail & Related papers (2021-02-22T15:26:57Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.