Neural Operator Learning for Long-Time Integration in Dynamical Systems with Recurrent Neural Networks
- URL: http://arxiv.org/abs/2303.02243v3
- Date: Tue, 30 Apr 2024 10:27:09 GMT
- Title: Neural Operator Learning for Long-Time Integration in Dynamical Systems with Recurrent Neural Networks
- Authors: Katarzyna Michałowska, Somdatta Goswami, George Em Karniadakis, Signe Riemer-Sørensen,
- Abstract summary: Deep neural networks offer reduced computational costs during inference and can be trained directly from observational data.
Existing methods, however, cannot extrapolate accurately and are prone to error accumulation in long-time integration.
We address this issue by combining neural operators with recurrent neural networks, learning the operator mapping, while offering a recurrent structure to capture temporal dependencies.
- Score: 1.6874375111244329
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks are an attractive alternative for simulating complex dynamical systems, as in comparison to traditional scientific computing methods, they offer reduced computational costs during inference and can be trained directly from observational data. Existing methods, however, cannot extrapolate accurately and are prone to error accumulation in long-time integration. Herein, we address this issue by combining neural operators with recurrent neural networks, learning the operator mapping, while offering a recurrent structure to capture temporal dependencies. The integrated framework is shown to stabilize the solution and reduce error accumulation for both interpolation and extrapolation of the Korteweg-de Vries equation.
Related papers
- Gradient-free training of recurrent neural networks [3.272216546040443]
We introduce a computational approach to construct all weights and biases of a recurrent neural network without using gradient-based methods.
The approach is based on a combination of random feature networks and Koopman operator theory for dynamical systems.
In computational experiments on time series, forecasting for chaotic dynamical systems, and control problems, we observe that the training time and forecasting accuracy of the recurrent neural networks we construct are improved.
arXiv Detail & Related papers (2024-10-30T21:24:34Z) - An exact mathematical description of computation with transient
spatiotemporal dynamics in a complex-valued neural network [33.7054351451505]
We study a complex-valued neural network (-NN) with linear time-delayed interactions.
cv-NN displays sophisticated dynamics, including partially synchronized chimera adaptable'' states.
We demonstrate that computations in cv-NN computation are decodable by living biological neurons.
arXiv Detail & Related papers (2023-11-28T02:23:30Z) - Neural Network with Local Converging Input (NNLCI) for Supersonic Flow
Problems with Unstructured Grids [0.9152133607343995]
We develop a neural network with local converging input (NNLCI) for high-fidelity prediction using unstructured data.
As a validation case, the NNLCI method is applied to study inviscid supersonic flows in channels with bumps.
arXiv Detail & Related papers (2023-10-23T19:03:37Z) - Emulation Learning for Neuromimetic Systems [0.0]
Building on our recent research on neural quantization systems, results on learning quantized motions and resilience to channel dropouts are reported.
We propose a general Deep Q Network (DQN) algorithm that can not only learn the trajectory but also exhibit the advantages of resilience to channel dropout.
arXiv Detail & Related papers (2023-05-04T22:47:39Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - Implicit recurrent networks: A novel approach to stationary input
processing with recurrent neural networks in deep learning [0.0]
In this work, we introduce and test a novel implementation of recurrent neural networks into deep learning.
We provide an algorithm which implements the backpropagation algorithm on a implicit implementation of recurrent networks.
A single-layer implicit recurrent network is able to solve the XOR problem, while a feed-forward network with monotonically increasing activation function fails at this task.
arXiv Detail & Related papers (2020-10-20T18:55:32Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.