Visual Perception System for Autonomous Driving
- URL: http://arxiv.org/abs/2303.02257v2
- Date: Tue, 31 Oct 2023 22:50:12 GMT
- Title: Visual Perception System for Autonomous Driving
- Authors: Qi Zhang, Siyuan Gou, Wenbin Li
- Abstract summary: This work introduces a visual-based perception system for autonomous driving that integrates trajectory tracking and prediction of moving objects to prevent collisions.
The system leverages motion cues from pedestrians to monitor and forecast their movements and simultaneously maps the environment.
The performance, efficiency, and resilience of this approach are substantiated through comprehensive evaluations of both simulated and real-world datasets.
- Score: 9.659835301514288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent surge in interest in autonomous driving stems from its rapidly
developing capacity to enhance safety, efficiency, and convenience. A pivotal
aspect of autonomous driving technology is its perceptual systems, where core
algorithms have yielded more precise algorithms applicable to autonomous
driving, including vision-based Simultaneous Localization and Mapping (SLAMs),
object detection, and tracking algorithms. This work introduces a visual-based
perception system for autonomous driving that integrates trajectory tracking
and prediction of moving objects to prevent collisions, while addressing
autonomous driving's localization and mapping requirements. The system
leverages motion cues from pedestrians to monitor and forecast their movements
and simultaneously maps the environment. This integrated approach resolves
camera localization and the tracking of other moving objects in the scene,
subsequently generating a sparse map to facilitate vehicle navigation. The
performance, efficiency, and resilience of this approach are substantiated
through comprehensive evaluations of both simulated and real-world datasets.
Related papers
- Advancing Autonomous Driving Perception: Analysis of Sensor Fusion and Computer Vision Techniques [0.0]
This project focuses on enhancing the understanding and navigation capabilities of self-driving robots.
It explores how we can perform better navigation into unknown map 2D map with existing detection and tracking algorithms.
arXiv Detail & Related papers (2024-11-15T19:11:58Z) - 3D Object Visibility Prediction in Autonomous Driving [6.802572869909114]
We present a novel attribute and its corresponding algorithm: 3D object visibility.
Our proposal of this attribute and its computational strategy aims to expand the capabilities for downstream tasks.
arXiv Detail & Related papers (2024-03-06T13:07:42Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
Recent perception systems enhance spatial understanding with sensor fusion but often lack full environmental context.
We introduce a framework that integrates three cameras to emulate the human field of view, coupled with top-down bird-eye-view semantic data to enhance contextual representation.
Our method achieves displacement error by 0.67m in open-loop settings, surpassing current methods by 6.9% on the nuScenes dataset.
arXiv Detail & Related papers (2022-10-13T05:56:20Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - LiveMap: Real-Time Dynamic Map in Automotive Edge Computing [14.195521569220448]
LiveMap is a real-time dynamic map that detects, matches, and tracks objects on the road with crowdsourcing data from connected vehicles in sub-second.
We develop the control plane of LiveMap that allows adaptive offloading of vehicle computations.
We implement LiveMap on a small-scale testbed and develop a large-scale network simulator.
arXiv Detail & Related papers (2020-12-16T15:00:49Z) - Artificial Intelligence Enabled Traffic Monitoring System [3.085453921856008]
This article presents a novel approach to automatically monitor real time traffic footage using deep convolutional neural networks.
The proposed system deploys several state-of-the-art deep learning algorithms to automate different traffic monitoring needs.
arXiv Detail & Related papers (2020-10-02T22:28:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.