Real-Time Hand Gesture Identification in Thermal Images
- URL: http://arxiv.org/abs/2303.02321v1
- Date: Sat, 4 Mar 2023 05:02:35 GMT
- Title: Real-Time Hand Gesture Identification in Thermal Images
- Authors: James Ballow, Soumyabrata Dey
- Abstract summary: Our system is capable of handling multiple hand regions in a frame and process it fast for real-time applications.
We collected a new thermal image data set with 10 gestures and reported an end-to-end hand gesture recognition accuracy of 97%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hand gesture-based human-computer interaction is an important problem that is
well explored using color camera data. In this work we proposed a hand gesture
detection system using thermal images. Our system is capable of handling
multiple hand regions in a frame and process it fast for real-time
applications. Our system performs a series of steps including background
subtraction-based hand mask generation, k-means based hand region
identification, hand segmentation to remove the forearm region, and a
Convolutional Neural Network (CNN) based gesture classification. Our work
introduces two novel algorithms, bubble growth and bubble search, for faster
hand segmentation. We collected a new thermal image data set with 10 gestures
and reported an end-to-end hand gesture recognition accuracy of 97%.
Related papers
- Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
We demonstrate a hand gesture recognition system that uses signals from capacitive sensors embedded into the etee hand controller.
The controller generates real-time signals from each of the wearer five fingers.
We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms.
arXiv Detail & Related papers (2023-05-12T17:24:02Z) - HandNeRF: Neural Radiance Fields for Animatable Interacting Hands [122.32855646927013]
We propose a novel framework to reconstruct accurate appearance and geometry with neural radiance fields (NeRF) for interacting hands.
We conduct extensive experiments to verify the merits of our proposed HandNeRF and report a series of state-of-the-art results.
arXiv Detail & Related papers (2023-03-24T06:19:19Z) - Deformer: Dynamic Fusion Transformer for Robust Hand Pose Estimation [59.3035531612715]
Existing methods often struggle to generate plausible hand poses when the hand is heavily occluded or blurred.
In videos, the movements of the hand allow us to observe various parts of the hand that may be occluded or blurred in a single frame.
We propose the Deformer: a framework that implicitly reasons about the relationship between hand parts within the same image.
arXiv Detail & Related papers (2023-03-09T02:24:30Z) - Simultaneous prediction of hand gestures, handedness, and hand keypoints
using thermal images [0.6087960723103347]
We propose a technique for simultaneous hand gesture classification, handedness detection, and hand keypoints localization using thermal data captured by an infrared camera.
Our method uses a novel deep multi-task learning architecture that includes shared encoderdecoder layers followed by three branches dedicated for each mentioned task.
arXiv Detail & Related papers (2023-03-02T19:25:40Z) - On-device Real-time Hand Gesture Recognition [1.4658400971135652]
We present an on-device real-time hand gesture recognition (HGR) system, which detects a set of predefined static gestures from a single RGB camera.
We use MediaPipe Hands as the basis of the hand skeleton tracker, improve the keypoint accuracy, and add the estimation of 3D keypoints in a world metric space.
arXiv Detail & Related papers (2021-10-29T18:33:25Z) - Hand gesture detection in tests performed by older adults [9.00837522898458]
We are developing an online test that analyses hand movement features associated with ageing.
To obtain hand movement features, participants will be asked to perform a variety of hand gestures using their own computer cameras.
It is challenging to collect high quality hand movement video data, especially for older participants.
arXiv Detail & Related papers (2021-10-27T14:29:01Z) - A deep-learning--based multimodal depth-aware dynamic hand gesture
recognition system [5.458813674116228]
We focus on dynamic hand gesture (DHG) recognition using depth quantized image hand skeleton joint points.
In particular, we explore the effect of using depth-quantized features in CNN and Recurrent Neural Network (RNN) based multi-modal fusion networks.
arXiv Detail & Related papers (2021-07-06T11:18:53Z) - Learning to Disambiguate Strongly Interacting Hands via Probabilistic
Per-pixel Part Segmentation [84.28064034301445]
Self-similarity, and the resulting ambiguities in assigning pixel observations to the respective hands, is a major cause of the final 3D pose error.
We propose DIGIT, a novel method for estimating the 3D poses of two interacting hands from a single monocular image.
We experimentally show that the proposed approach achieves new state-of-the-art performance on the InterHand2.6M dataset.
arXiv Detail & Related papers (2021-07-01T13:28:02Z) - HAN: An Efficient Hierarchical Self-Attention Network for Skeleton-Based
Gesture Recognition [73.64451471862613]
We propose an efficient hierarchical self-attention network (HAN) for skeleton-based gesture recognition.
Joint self-attention module is used to capture spatial features of fingers, the finger self-attention module is designed to aggregate features of the whole hand.
Experiments show that our method achieves competitive results on three gesture recognition datasets with much lower computational complexity.
arXiv Detail & Related papers (2021-06-25T02:15:53Z) - SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild [62.450907796261646]
Recognition of hand gestures can be performed directly from the stream of hand skeletons estimated by software.
Despite the recent advancements in gesture and action recognition from skeletons, it is unclear how well the current state-of-the-art techniques can perform in a real-world scenario.
This paper presents the results of the SHREC 2021: Track on Skeleton-based Hand Gesture Recognition in the Wild contest.
arXiv Detail & Related papers (2021-06-21T10:57:49Z) - Understanding the hand-gestures using Convolutional Neural Networks and
Generative Adversial Networks [0.0]
The system consists of three modules: real time hand tracking, training gesture and gesture recognition using Convolutional Neural Networks.
It has been tested to the vocabulary of 36 gestures including the alphabets and digits, and results effectiveness of the approach.
arXiv Detail & Related papers (2020-11-10T02:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.