DAG Matters! GFlowNets Enhanced Explainer For Graph Neural Networks
- URL: http://arxiv.org/abs/2303.02448v1
- Date: Sat, 4 Mar 2023 16:15:25 GMT
- Title: DAG Matters! GFlowNets Enhanced Explainer For Graph Neural Networks
- Authors: Wenqian Li, Yinchuan Li, Zhigang Li, Jianye Hao, Yan Pang
- Abstract summary: We propose a generative structure -- GFlowNets-based GNN Explainer (GFlowExplainer)
Our GFlowExplainer aims to learn a policy that generates a distribution of subgraphs for which the probability of a subgraph is proportional to its' reward.
We conduct extensive experiments on both synthetic and real datasets, and both qualitative and quantitative results show the superiority of our GFlowExplainer.
- Score: 30.19635147123557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncovering rationales behind predictions of graph neural networks (GNNs) has
received increasing attention over the years. Existing literature mainly focus
on selecting a subgraph, through combinatorial optimization, to provide
faithful explanations. However, the exponential size of candidate subgraphs
limits the applicability of state-of-the-art methods to large-scale GNNs. We
enhance on this through a different approach: by proposing a generative
structure -- GFlowNets-based GNN Explainer (GFlowExplainer), we turn the
optimization problem into a step-by-step generative problem. Our GFlowExplainer
aims to learn a policy that generates a distribution of subgraphs for which the
probability of a subgraph is proportional to its' reward. The proposed approach
eliminates the influence of node sequence and thus does not need any
pre-training strategies. We also propose a new cut vertex matrix to efficiently
explore parent states for GFlowNets structure, thus making our approach
applicable in a large-scale setting. We conduct extensive experiments on both
synthetic and real datasets, and both qualitative and quantitative results show
the superiority of our GFlowExplainer.
Related papers
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
This paper studies the problem of learning message propagation strategies for graph neural networks (GNNs)
We introduce the optimal propagation steps as latent variables to help find the maximum-likelihood estimation of the GNN parameters.
Our proposed framework can effectively learn personalized and interpretable propagate strategies of messages in GNNs.
arXiv Detail & Related papers (2023-10-01T15:09:59Z) - Improving Expressivity of GNNs with Subgraph-specific Factor Embedded
Normalization [30.86182962089487]
Graph Neural Networks (GNNs) have emerged as a powerful category of learning architecture for handling graph-structured data.
We propose a dedicated plug-and-play normalization scheme, termed as SUbgraph-sPEcific FactoR Embedded Normalization (SuperNorm)
arXiv Detail & Related papers (2023-05-31T14:37:31Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - GFlowCausal: Generative Flow Networks for Causal Discovery [27.51595081346858]
We propose a novel approach to learning a Directed Acyclic Graph (DAG) from observational data called GFlowCausal.
GFlowCausal aims to learn the best policy to generate high-reward DAGs by sequential actions with probabilities proportional to predefined rewards.
We conduct extensive experiments on both synthetic and real datasets, and results show the proposed approach to be superior and also performs well in a large-scale setting.
arXiv Detail & Related papers (2022-10-15T04:07:39Z) - Neural Structured Prediction for Inductive Node Classification [29.908759584092167]
This paper studies node classification in the inductive setting, aiming to learn a model on labeled training graphs and generalize it to infer node labels on unlabeled test graphs.
We present a new approach called the Structured Proxy Network (SPN), which combines the advantages of both worlds.
arXiv Detail & Related papers (2022-04-15T15:50:27Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
Graph neural networks (GNNs) have demonstrated great success in representation learning for graph-structured data.
In this paper, we propose a novel framework - i.e., namely Adaptive Kernel Graph Neural Network (AKGNN)
AKGNN learns to adapt to the optimal graph kernel in a unified manner at the first attempt.
Experiments are conducted on acknowledged benchmark datasets and promising results demonstrate the outstanding performance of our proposed AKGNN.
arXiv Detail & Related papers (2021-12-08T20:23:58Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.