A Multi-Grained Self-Interpretable Symbolic-Neural Model For
Single/Multi-Labeled Text Classification
- URL: http://arxiv.org/abs/2303.02860v1
- Date: Mon, 6 Mar 2023 03:25:43 GMT
- Title: A Multi-Grained Self-Interpretable Symbolic-Neural Model For
Single/Multi-Labeled Text Classification
- Authors: Xiang Hu, Xinyu Kong, Kewei Tu
- Abstract summary: We propose a Symbolic-Neural model that can learn to explicitly predict class labels of text spans from a constituency tree.
As the structured language model learns to predict constituency trees in a self-supervised manner, only raw texts and sentence-level labels are required as training data.
Our experiments demonstrate that our approach could achieve good prediction accuracy in downstream tasks.
- Score: 29.075766631810595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks based on layer-stacking architectures have historically
suffered from poor inherent interpretability. Meanwhile, symbolic probabilistic
models function with clear interpretability, but how to combine them with
neural networks to enhance their performance remains to be explored. In this
paper, we try to marry these two systems for text classification via a
structured language model. We propose a Symbolic-Neural model that can learn to
explicitly predict class labels of text spans from a constituency tree without
requiring any access to span-level gold labels. As the structured language
model learns to predict constituency trees in a self-supervised manner, only
raw texts and sentence-level labels are required as training data, which makes
it essentially a general constituent-level self-interpretable classification
model. Our experiments demonstrate that our approach could achieve good
prediction accuracy in downstream tasks. Meanwhile, the predicted span labels
are consistent with human rationales to a certain degree.
Related papers
- Hierarchical Interpretation of Neural Text Classification [31.95426448656938]
This paper proposes a novel Hierarchical INTerpretable neural text classifier, called Hint, which can automatically generate explanations of model predictions.
Experimental results on both review datasets and news datasets show that our proposed approach achieves text classification results on par with existing state-of-the-art text classifiers.
arXiv Detail & Related papers (2022-02-20T11:15:03Z) - Computing Class Hierarchies from Classifiers [12.631679928202516]
We propose a novel algorithm for automatically acquiring a class hierarchy from a neural network.
Our algorithm produces surprisingly good hierarchies for some well-known deep neural network models.
arXiv Detail & Related papers (2021-12-02T13:01:04Z) - Hierarchical Heterogeneous Graph Representation Learning for Short Text
Classification [60.233529926965836]
We propose a new method called SHINE, which is based on graph neural network (GNN) for short text classification.
First, we model the short text dataset as a hierarchical heterogeneous graph consisting of word-level component graphs.
Then, we dynamically learn a short document graph that facilitates effective label propagation among similar short texts.
arXiv Detail & Related papers (2021-10-30T05:33:05Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - Read Like Humans: Autonomous, Bidirectional and Iterative Language
Modeling for Scene Text Recognition [80.446770909975]
Linguistic knowledge is of great benefit to scene text recognition.
How to effectively model linguistic rules in end-to-end deep networks remains a research challenge.
We propose an autonomous, bidirectional and iterative ABINet for scene text recognition.
arXiv Detail & Related papers (2021-03-11T06:47:45Z) - NSL: Hybrid Interpretable Learning From Noisy Raw Data [66.15862011405882]
This paper introduces a hybrid neural-symbolic learning framework, called NSL, that learns interpretable rules from labelled unstructured data.
NSL combines pre-trained neural networks for feature extraction with FastLAS, a state-of-the-art ILP system for rule learning under the answer set semantics.
We demonstrate that NSL is able to learn robust rules from MNIST data and achieve comparable or superior accuracy when compared to neural network and random forest baselines.
arXiv Detail & Related papers (2020-12-09T13:02:44Z) - Seeing Both the Forest and the Trees: Multi-head Attention for Joint
Classification on Different Compositional Levels [15.453888735879525]
In natural languages, words are used in association to construct sentences.
We design a deep neural network architecture that explicitly wires lower and higher linguistic components.
We show that our model, MHAL, learns to simultaneously solve them at different levels of granularity.
arXiv Detail & Related papers (2020-11-01T10:44:46Z) - A Framework to Learn with Interpretation [2.3741312212138896]
We present a novel framework to jointly learn a predictive model and its associated interpretation model.
We seek for a small-size dictionary of high level attribute functions that take as inputs the outputs of selected hidden layers.
A detailed pipeline to visualize the learnt features is also developed.
arXiv Detail & Related papers (2020-10-19T09:26:28Z) - Predicting What You Already Know Helps: Provable Self-Supervised
Learning [60.27658820909876]
Self-supervised representation learning solves auxiliary prediction tasks (known as pretext tasks) without requiring labeled data.
We show a mechanism exploiting the statistical connections between certain em reconstruction-based pretext tasks that guarantee to learn a good representation.
We prove the linear layer yields small approximation error even for complex ground truth function class.
arXiv Detail & Related papers (2020-08-03T17:56:13Z) - Generating Hierarchical Explanations on Text Classification via Feature
Interaction Detection [21.02924712220406]
We build hierarchical explanations by detecting feature interactions.
Such explanations visualize how words and phrases are combined at different levels of the hierarchy.
Experiments show the effectiveness of the proposed method in providing explanations both faithful to models and interpretable to humans.
arXiv Detail & Related papers (2020-04-04T20:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.