Dynamic Prompting: A Unified Framework for Prompt Tuning
- URL: http://arxiv.org/abs/2303.02909v2
- Date: Sat, 27 May 2023 01:29:27 GMT
- Title: Dynamic Prompting: A Unified Framework for Prompt Tuning
- Authors: Xianjun Yang, Wei Cheng, Xujiang Zhao, Wenchao Yu, Linda Petzold and
Haifeng Chen
- Abstract summary: We present a unified dynamic prompt (DP) tuning strategy that dynamically determines different factors of prompts based on specific tasks and instances.
Experimental results underscore the significant performance improvement achieved by dynamic prompt tuning across a wide range of tasks.
We establish the universal applicability of our approach under full-data, few-shot, and multitask scenarios.
- Score: 33.175097465669374
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: It has been demonstrated that the art of prompt tuning is highly effective in
efficiently extracting knowledge from pretrained foundation models,
encompassing pretrained language models (PLMs), vision pretrained models, and
vision-language (V-L) models. However, the efficacy of employing fixed soft
prompts with a predetermined position for concatenation with inputs for all
instances, irrespective of their inherent disparities, remains uncertain.
Variables such as the position, length, and representations of prompts across
diverse instances and tasks can substantially influence the performance of
prompt tuning. In this context, we provide a theoretical analysis, which
reveals that optimizing the position of the prompt to encompass the input can
capture additional semantic information that traditional prefix or postfix
prompt tuning methods fail to capture. Building upon our analysis, we present a
unified dynamic prompt (DP) tuning strategy that dynamically determines
different factors of prompts based on specific tasks and instances. To
accomplish this, we employ a lightweight learning network with Gumble-Softmax,
allowing us to learn instance-dependent guidance. Experimental results
underscore the significant performance improvement achieved by dynamic prompt
tuning across a wide range of tasks, including NLP tasks, vision recognition
tasks, and vision-language tasks. Furthermore, we establish the universal
applicability of our approach under full-data, few-shot, and multitask
scenarios. Codes are available at https://github.com/Xianjun-Yang/DPT.
Related papers
- Instance-Aware Graph Prompt Learning [71.26108600288308]
We introduce Instance-Aware Graph Prompt Learning (IA-GPL) in this paper.
The process involves generating intermediate prompts for each instance using a lightweight architecture.
Experiments conducted on multiple datasets and settings showcase the superior performance of IA-GPL compared to state-of-the-art baselines.
arXiv Detail & Related papers (2024-11-26T18:38:38Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) is a simple and effective approach to generate visual prompts that can transfer to different models and improve their performance on downstream tasks after trained on only one model.
We introduce two strategies to address the issue of cross-model feature corruption of existing visual prompting methods and enhance the transferability of the learned prompts.
arXiv Detail & Related papers (2024-04-17T09:39:07Z) - ULTRA-DP: Unifying Graph Pre-training with Multi-task Graph Dual Prompt [67.8934749027315]
We propose a unified framework for graph hybrid pre-training which injects the task identification and position identification into GNNs.
We also propose a novel pre-training paradigm based on a group of $k$-nearest neighbors.
arXiv Detail & Related papers (2023-10-23T12:11:13Z) - Distribution-Aware Prompt Tuning for Vision-Language Models [20.02599087680773]
A key to prompt tuning is the feature space alignment between two modalities via learnable vectors with model parameters fixed.
Inspired by this observation, we proposed distribution-aware prompt tuning (DAPT) for vision-language models.
Our experiments on 11 benchmark datasets demonstrate that our method significantly improves generalizability.
arXiv Detail & Related papers (2023-09-06T23:49:11Z) - Multitask Vision-Language Prompt Tuning [103.5967011236282]
We propose multitask vision-language prompt tuning (MV)
MV incorporates cross-task knowledge into prompt tuning for vision-language models.
Results in 20 vision tasks demonstrate that the proposed approach outperforms all single-task baseline prompt tuning methods.
arXiv Detail & Related papers (2022-11-21T18:41:44Z) - Prompt Tuning with Soft Context Sharing for Vision-Language Models [42.61889428498378]
We propose a novel method to tune pre-trained vision-language models on multiple target few-shot tasks jointly.
We show that SoftCPT significantly outperforms single-task prompt tuning methods.
arXiv Detail & Related papers (2022-08-29T10:19:10Z) - Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation
with Large Language Models [116.25562358482962]
State-of-the-art neural language models can be used to solve ad-hoc language tasks without the need for supervised training.
PromptIDE allows users to experiment with prompt variations, visualize prompt performance, and iteratively optimize prompts.
arXiv Detail & Related papers (2022-08-16T17:17:53Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
Instance-wise Prompt Tuning (IPT) is the first prompt learning paradigm that injects knowledge from the input data instances to the prompts.
IPT significantly outperforms task-based prompt learning methods, and achieves comparable performance to conventional finetuning with only 0.5% - 1.5% of tuned parameters.
arXiv Detail & Related papers (2022-06-04T10:08:50Z) - Towards Unified Prompt Tuning for Few-shot Text Classification [47.71344780587704]
We present the Unified Prompt Tuning (UPT) framework, leading to better few-shot text classification for BERT-style models.
In UPT, a novel paradigm Prompt-Options-Verbalizer is proposed for joint prompt learning across different NLP tasks.
We also design a self-supervised task named Knowledge-enhanced Selective Masked Language Modeling to improve the PLM's generalization abilities.
arXiv Detail & Related papers (2022-05-11T07:40:45Z) - Making Pre-trained Language Models End-to-end Few-shot Learners with
Contrastive Prompt Tuning [41.15017636192417]
We present CP-Tuning, the first end-to-end Contrastive Prompt Tuning framework for fine-tuning Language Models.
It is integrated with the task-invariant continuous prompt encoding technique with fully trainable prompt parameters.
Experiments over a variety of language understanding tasks used in IR systems and different PLMs show that CP-Tuning outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-04-01T02:24:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.