Population-based Evaluation in Repeated Rock-Paper-Scissors as a
Benchmark for Multiagent Reinforcement Learning
- URL: http://arxiv.org/abs/2303.03196v2
- Date: Tue, 31 Oct 2023 23:35:26 GMT
- Title: Population-based Evaluation in Repeated Rock-Paper-Scissors as a
Benchmark for Multiagent Reinforcement Learning
- Authors: Marc Lanctot, John Schultz, Neil Burch, Max Olan Smith, Daniel Hennes,
Thomas Anthony, Julien Perolat
- Abstract summary: We propose a benchmark for multiagent learning based on repeated play of the simple game Rock, Paper, Scissors.
We describe metrics to measure the quality of agents based both on average returns and exploitability.
- Score: 14.37986882249142
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Progress in fields of machine learning and adversarial planning has benefited
significantly from benchmark domains, from checkers and the classic UCI data
sets to Go and Diplomacy. In sequential decision-making, agent evaluation has
largely been restricted to few interactions against experts, with the aim to
reach some desired level of performance (e.g. beating a human professional
player). We propose a benchmark for multiagent learning based on repeated play
of the simple game Rock, Paper, Scissors along with a population of forty-three
tournament entries, some of which are intentionally sub-optimal. We describe
metrics to measure the quality of agents based both on average returns and
exploitability. We then show that several RL, online learning, and language
model approaches can learn good counter-strategies and generalize well, but
ultimately lose to the top-performing bots, creating an opportunity for
research in multiagent learning.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Multi-Agent Training for Pommerman: Curriculum Learning and Population-based Self-Play Approach [11.740631954398292]
Pommerman is an ideal benchmark for multi-agent training, providing a battleground for two teams with communication capabilities among allied agents.
This study introduces a system designed to train multi-agent systems to play Pommerman using a combination of curriculum learning and population-based self-play.
arXiv Detail & Related papers (2024-06-30T11:14:29Z) - Impact of Decentralized Learning on Player Utilities in Stackelberg Games [57.08270857260131]
In many two-agent systems, each agent learns separately and the rewards of the two agents are not perfectly aligned.
We model these systems as Stackelberg games with decentralized learning and show that standard regret benchmarks result in worst-case linear regret for at least one player.
We develop algorithms to achieve near-optimal $O(T2/3)$ regret for both players with respect to these benchmarks.
arXiv Detail & Related papers (2024-02-29T23:38:28Z) - Generating Personas for Games with Multimodal Adversarial Imitation
Learning [47.70823327747952]
Reinforcement learning has been widely successful in producing agents capable of playing games at a human level.
Going beyond reinforcement learning is necessary to model a wide range of human playstyles.
This paper presents a novel imitation learning approach to generate multiple persona policies for playtesting.
arXiv Detail & Related papers (2023-08-15T06:58:19Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
We build a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models.
Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
arXiv Detail & Related papers (2023-08-14T15:13:04Z) - An Empirical Study on Google Research Football Multi-agent Scenarios [30.926070192524193]
We open-source our training framework Light-MALib which extends the MALib by distributed and asynchronized implementation with additional analytical tools for football games.
We provide guidance for building strong football AI with population-based training and release diverse pretrained policies for benchmarking.
arXiv Detail & Related papers (2023-05-16T14:18:53Z) - MERMAIDE: Learning to Align Learners using Model-Based Meta-Learning [62.065503126104126]
We study how a principal can efficiently and effectively intervene on the rewards of a previously unseen learning agent in order to induce desirable outcomes.
This is relevant to many real-world settings like auctions or taxation, where the principal may not know the learning behavior nor the rewards of real people.
We introduce MERMAIDE, a model-based meta-learning framework to train a principal that can quickly adapt to out-of-distribution agents.
arXiv Detail & Related papers (2023-04-10T15:44:50Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - Reinforcement Learning Agents in Colonel Blotto [0.0]
We focus on a specific instance of agent-based models, which uses reinforcement learning (RL) to train the agent how to act in its environment.
We find that the RL agent handily beats a single opponent, and still performs quite well when the number of opponents are increased.
We also analyze the RL agent and look at what strategies it has arrived by looking at the actions that it has given the highest and lowest Q-values.
arXiv Detail & Related papers (2022-04-04T16:18:01Z) - Learning Meta Representations for Agents in Multi-Agent Reinforcement
Learning [12.170248966278281]
In multi-agent reinforcement learning, behaviors that agents learn in a single Markov Game (MG) are typically confined to the given agent number.
In this work, our focus is on creating agents that can generalize across population-varying MGs.
Instead of learning a unimodal policy, each agent learns a policy set comprising effective strategies across a variety of games.
arXiv Detail & Related papers (2021-08-30T04:30:53Z) - Is Independent Learning All You Need in the StarCraft Multi-Agent
Challenge? [100.48692829396778]
Independent PPO (IPPO) is a form of independent learning in which each agent simply estimates its local value function.
IPPO's strong performance may be due to its robustness to some forms of environment non-stationarity.
arXiv Detail & Related papers (2020-11-18T20:29:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.