Research on Efficient Fuzzy Clustering Method Based on Local Fuzzy
Granular balls
- URL: http://arxiv.org/abs/2303.03590v2
- Date: Wed, 8 Mar 2023 13:33:25 GMT
- Title: Research on Efficient Fuzzy Clustering Method Based on Local Fuzzy
Granular balls
- Authors: Jiang Xie, Qiao Deng, Shuyin Xia, Yangzhou Zhao, Guoyin Wang and Xinbo
Gao
- Abstract summary: In this paper, the data is fuzzy iterated using granular-balls, and the membership degree of data only considers the two granular-balls where it is located.
The formed fuzzy granular-balls set can use more processing methods in the face of different data scenarios.
- Score: 67.33923111887933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the problem of fuzzy clustering has been widely concerned.
The membership iteration of existing methods is mostly considered globally,
which has considerable problems in noisy environments, and iterative
calculations for clusters with a large number of different sample sizes are not
accurate and efficient. In this paper, starting from the strategy of
large-scale priority, the data is fuzzy iterated using granular-balls, and the
membership degree of data only considers the two granular-balls where it is
located, thus improving the efficiency of iteration. The formed fuzzy
granular-balls set can use more processing methods in the face of different
data scenarios, which enhances the practicability of fuzzy clustering
calculations.
Related papers
- GBFRS: Robust Fuzzy Rough Sets via Granular-ball Computing [48.33779268699777]
Fuzzy rough set theory is effective for processing datasets with complex attributes.
Most existing models operate at the finest granularity, rendering them inefficient and sensitive to noise.
This paper proposes integrating multi-granularity granular-ball computing into fuzzy rough set theory, using granular-balls to replace sample points.
arXiv Detail & Related papers (2025-01-30T15:09:26Z) - Boosting K-means for Big Data by Fusing Data Streaming with Global Optimization [0.3069335774032178]
K-means clustering is a cornerstone of data mining, but its efficiency deteriorates when confronted with massive datasets.
We propose a novel algorithm that leverages the Variable Neighborhood Search (VNS) metaheuristic to optimize K-means clustering for big data.
arXiv Detail & Related papers (2024-10-18T15:43:34Z) - GBCT: An Efficient and Adaptive Granular-Ball Clustering Algorithm for Complex Data [49.56145012222276]
We propose a new clustering algorithm called granular-ball clustering (GBCT) via granular-ball computing.
GBCT forms clusters according to the relationship between granular-balls, instead of the traditional point relationship.
As granular-balls can fit various complex data, GBCT performs much better in non-spherical data sets than other traditional clustering methods.
arXiv Detail & Related papers (2024-10-17T07:32:05Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Influence of Swarm Intelligence in Data Clustering Mechanisms [0.0]
Nature inspired Swarm based algorithms are used for data clustering to cope with larger datasets with lack and inconsistency of data.
This paper reviews the performances of these new approaches and compares which is best for certain problematic situation.
arXiv Detail & Related papers (2023-05-07T08:40:50Z) - GBMST: An Efficient Minimum Spanning Tree Clustering Based on
Granular-Ball Computing [78.92205914422925]
We propose a clustering algorithm that combines multi-granularity Granular-Ball and minimum spanning tree (MST)
We construct coarsegrained granular-balls, and then use granular-balls and MST to implement the clustering method based on "large-scale priority"
Experimental results on several data sets demonstrate the power of the algorithm.
arXiv Detail & Related papers (2023-03-02T09:04:35Z) - Scalable Clustering: Large Scale Unsupervised Learning of Gaussian
Mixture Models with Outliers [5.478764356647437]
This paper introduces a provably robust clustering algorithm based on loss minimization.
It provides theoretical guarantees that the algorithm obtains high accuracy with high probability.
Experiments on real-world large-scale datasets demonstrate the effectiveness of the algorithm.
arXiv Detail & Related papers (2023-02-28T14:39:18Z) - ThetA -- fast and robust clustering via a distance parameter [3.0020405188885815]
Clustering is a fundamental problem in machine learning where distance-based approaches have dominated the field for many decades.
We propose a new set of distance threshold methods called Theta-based Algorithms (ThetA)
arXiv Detail & Related papers (2021-02-13T23:16:33Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.