FIT: Frequency-based Image Translation for Domain Adaptive Object
Detection
- URL: http://arxiv.org/abs/2303.03698v1
- Date: Tue, 7 Mar 2023 07:30:08 GMT
- Title: FIT: Frequency-based Image Translation for Domain Adaptive Object
Detection
- Authors: Siqi Zhang, Lu Zhang, Zhiyong Liu and Hangtao Feng
- Abstract summary: We propose a novel Frequency-based Image Translation (FIT) framework for Domain adaptive object detection (DAOD)
First, by keeping domain-invariant frequency components and swapping domain-specific ones, we conduct image translation to reduce domain shift at the input level.
Second, hierarchical adversarial feature learning is utilized to further mitigate the domain gap at the feature level.
- Score: 8.635264598464355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptive object detection (DAOD) aims to adapt the detector from a
labelled source domain to an unlabelled target domain. In recent years, DAOD
has attracted massive attention since it can alleviate performance degradation
due to the large shift of data distributions in the wild. To align
distributions between domains, adversarial learning is widely used in existing
DAOD methods. However, the decision boundary for the adversarial domain
discriminator may be inaccurate, causing the model biased towards the source
domain. To alleviate this bias, we propose a novel Frequency-based Image
Translation (FIT) framework for DAOD. First, by keeping domain-invariant
frequency components and swapping domain-specific ones, we conduct image
translation to reduce domain shift at the input level. Second, hierarchical
adversarial feature learning is utilized to further mitigate the domain gap at
the feature level. Finally, we design a joint loss to train the entire network
in an end-to-end manner without extra training to obtain translated images.
Extensive experiments on three challenging DAOD benchmarks demonstrate the
effectiveness of our method.
Related papers
- Source-free Domain Adaptive Object Detection in Remote Sensing Images [11.19538606490404]
We propose a source-free object detection (SFOD) setting for RS images.
It aims to perform target domain adaptation using only the source pre-trained model.
Our method does not require access to source domain RS images.
arXiv Detail & Related papers (2024-01-31T15:32:44Z) - Unsupervised Domain Adaptation via Domain-Adaptive Diffusion [31.802163238282343]
Unsupervised Domain Adaptation (UDA) is quite challenging due to the large distribution discrepancy between the source domain and the target domain.
Inspired by diffusion models which have strong capability to gradually convert data distributions across a large gap, we consider to explore the diffusion technique to handle the challenging UDA task.
Our method outperforms the current state-of-the-arts by a large margin on three widely used UDA datasets.
arXiv Detail & Related papers (2023-08-26T14:28:18Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
We propose a novel domain adaptation method called cyclically disentangled feature translation network (CDFTN)
CDFTN generates pseudo-labeled samples that possess: 1) source domain-invariant liveness features and 2) target domain-specific content features, which are disentangled through domain adversarial training.
A robust classifier is trained based on the synthetic pseudo-labeled images under the supervision of source domain labels.
arXiv Detail & Related papers (2022-12-07T14:12:34Z) - Reducing Domain Gap in Frequency and Spatial domain for Cross-modality
Domain Adaptation on Medical Image Segmentation [5.371816551086118]
Unsupervised domain adaptation (UDA) aims to learn a model trained on source domain and performs well on unlabeled target domain.
We propose a simple yet effective UDA method based on frequency and spatial domain transfer uner multi-teacher distillation framework.
Our proposed method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2022-11-28T11:35:39Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Frequency Spectrum Augmentation Consistency for Domain Adaptive Object
Detection [107.52026281057343]
We introduce a Frequency Spectrum Augmentation Consistency (FSAC) framework with four different low-frequency filter operations.
In the first stage, we utilize all the original and augmented source data to train an object detector.
In the second stage, augmented source and target data with pseudo labels are adopted to perform the self-training for prediction consistency.
arXiv Detail & Related papers (2021-12-16T04:07:01Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - Re-energizing Domain Discriminator with Sample Relabeling for
Adversarial Domain Adaptation [88.86865069583149]
Unsupervised domain adaptation (UDA) methods exploit domain adversarial training to align the features to reduce domain gap.
In this work, we propose an efficient optimization strategy named Re-enforceable Adversarial Domain Adaptation (RADA)
RADA aims to re-energize the domain discriminator during the training by using dynamic domain labels.
arXiv Detail & Related papers (2021-03-22T08:32:55Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
Unsupervised domain adaptation is a promising avenue which transfers knowledge from a source domain to a target domain.
We propose distance metric guided feature alignment (MetFA) to extract discriminative as well as domain-invariant features on both source and target domains.
Our model integrates class distribution alignment to transfer semantic knowledge from a source domain to a target domain.
arXiv Detail & Related papers (2020-08-19T13:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.