Unbiased Learning to Rank with Biased Continuous Feedback
- URL: http://arxiv.org/abs/2303.04335v1
- Date: Wed, 8 Mar 2023 02:14:08 GMT
- Title: Unbiased Learning to Rank with Biased Continuous Feedback
- Authors: Yi Ren, Hongyan Tang, Siwen Zhu
- Abstract summary: Unbiased learning-to-rank(LTR) algorithms are verified to model the relative relevance accurately based on noisy feedback.
To provide personalized high-quality recommendation results, recommender systems need model both categorical and continuous biased feedback.
We introduce the pairwise trust bias to separate the position bias, trust bias, and user relevance explicitly.
Experiment results on public benchmark datasets and internal live traffic of a large-scale recommender system at Tencent News show superior results for continuous labels.
- Score: 5.561943356123711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is a well-known challenge to learn an unbiased ranker with biased
feedback. Unbiased learning-to-rank(LTR) algorithms, which are verified to
model the relative relevance accurately based on noisy feedback, are appealing
candidates and have already been applied in many applications with single
categorical labels, such as user click signals. Nevertheless, the existing
unbiased LTR methods cannot properly handle continuous feedback, which are
essential for many industrial applications, such as content recommender
systems.
To provide personalized high-quality recommendation results, recommender
systems need model both categorical and continuous biased feedback, such as
click and dwell time. Accordingly, we design a novel unbiased LTR algorithm to
tackle the challenges, which innovatively models position bias in the pairwise
fashion and introduces the pairwise trust bias to separate the position bias,
trust bias, and user relevance explicitly and can work for both continuous and
categorical feedback. Experiment results on public benchmark datasets and
internal live traffic of a large-scale recommender system at Tencent News show
superior results for continuous labels and also competitive performance for
categorical labels of the proposed method.
Related papers
- Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems [74.47680026838128]
Two typical forms of bias in user interaction data with recommender systems (RSs) are popularity bias and positivity bias.
We consider multifactorial selection bias affected by both item and rating value factors.
We propose smoothing and alternating gradient descent techniques to reduce variance and improve the robustness of its optimization.
arXiv Detail & Related papers (2024-04-29T12:18:21Z) - Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction [56.17020601803071]
Recent research shows that pre-trained language models (PLMs) suffer from "prompt bias" in factual knowledge extraction.
This paper aims to improve the reliability of existing benchmarks by thoroughly investigating and mitigating prompt bias.
arXiv Detail & Related papers (2024-03-15T02:04:35Z) - Debiased Model-based Interactive Recommendation [22.007617148466807]
We develop a model called textbfidentifiable textbfDebiased textbfModel-based textbfInteractive textbfRecommendation (textbfiDMIR in short)
For the first drawback, we devise a debiased causal world model based on the causal mechanism of the time-varying recommendation generation process with identification guarantees.
For the second drawback, we devise a debiased contrastive policy, which coincides with the debiased contrastive learning and avoids sampling bias
arXiv Detail & Related papers (2024-02-24T14:10:04Z) - Marginal Debiased Network for Fair Visual Recognition [59.05212866862219]
We propose a novel marginal debiased network (MDN) to learn debiased representations.
Our MDN can achieve a remarkable performance on under-represented samples.
arXiv Detail & Related papers (2024-01-04T08:57:09Z) - Metrics for popularity bias in dynamic recommender systems [0.0]
Biased recommendations may lead to decisions that can potentially have adverse effects on individuals, sensitive user groups, and society.
This paper focuses on quantifying popularity bias that stems directly from the output of RecSys models.
Four metrics to quantify popularity bias in RescSys over time in dynamic setting across different sensitive user groups have been proposed.
arXiv Detail & Related papers (2023-10-12T16:15:30Z) - Whole Page Unbiased Learning to Rank [59.52040055543542]
Unbiased Learning to Rank(ULTR) algorithms are proposed to learn an unbiased ranking model with biased click data.
We propose a Bias Agnostic whole-page unbiased Learning to rank algorithm, named BAL, to automatically find the user behavior model.
Experimental results on a real-world dataset verify the effectiveness of the BAL.
arXiv Detail & Related papers (2022-10-19T16:53:08Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
Spurious correlations can cause strong biases in deep neural networks, impairing generalization ability.
We propose a self-supervised debiasing framework potentially compatible with unlabeled samples.
Remarkably, the proposed debiasing framework significantly improves the generalization performance of self-supervised learning baselines.
arXiv Detail & Related papers (2022-10-11T08:26:19Z) - Bilateral Self-unbiased Learning from Biased Implicit Feedback [10.690479112143658]
We propose a novel unbiased recommender learning model, namely BIlateral SElf-unbiased Recommender (BISER)
BISER consists of two key components: (i) self-inverse propensity weighting (SIPW) to gradually mitigate the bias of items without incurring high computational costs; and (ii) bilateral unbiased learning (BU) to bridge the gap between two complementary models in model predictions.
Extensive experiments show that BISER consistently outperforms state-of-the-art unbiased recommender models over several datasets.
arXiv Detail & Related papers (2022-07-26T05:17:42Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
We develop a new learning paradigm named Cross Pairwise Ranking (CPR)
CPR achieves unbiased recommendation without knowing the exposure mechanism.
We prove in theory that this way offsets the influence of user/item propensity on the learning.
arXiv Detail & Related papers (2022-04-26T09:20:27Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
Unbiased learning to rank algorithms are appealing candidates and have already been applied in many applications with single categorical labels.
We propose a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion.
Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.
arXiv Detail & Related papers (2021-11-25T06:04:59Z) - Correcting the User Feedback-Loop Bias for Recommendation Systems [34.44834423714441]
We propose a systematic and dynamic way to correct user feedback-loop bias in recommendation systems.
Our method includes a deep-learning component to learn each user's dynamic rating history embedding.
We empirically validated the existence of such user feedback-loop bias in real world recommendation systems.
arXiv Detail & Related papers (2021-09-13T15:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.