Robust transitionless quantum driving: Concatenated approach
- URL: http://arxiv.org/abs/2303.04422v2
- Date: Sat, 15 Jul 2023 00:14:47 GMT
- Title: Robust transitionless quantum driving: Concatenated approach
- Authors: Zhi-Cheng Shi, Cheng Zhang, Li-Tuo Shen, Jie Song, Yan Xia, and X. X.
Yi
- Abstract summary: We propose an approach for implementing transitionless quantum driving regardless of adiabatic conditions.
The current approach is particularly efficient for all time-dependent pulses with arbitrary shape.
- Score: 12.242306503744798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a concatenated approach for implementing transitionless quantum
driving regardless of adiabatic conditions while being robustness with respect
to all kinds of systematic errors induced by pulse duration, pulse amplitude,
detunings, and Stark shift, etc. The current approach is particularly efficient
for all time-dependent pulses with arbitrary shape, and only the phase
differences between pulses is required to properly modulate. The simple
physical implementation without the help of pulse shaping techniques or extra
pulses makes this approach quite universal and provides a different avenue for
robust quantum control by the time-dependent Hamiltonian.
Related papers
- Energy control in a quantum oscillator using coherent control and engineered environment [83.88591755871734]
We develop and analyze a new method for manipulation of energy in a quantum harmonic oscillator using coherent, electromagnetic, field and incoherent control.
An approach to coherent and incoherent controls design based on the speed gradient algorithms is proposed.
A robustified speed-gradient control algorithm in differential form is also proposed.
arXiv Detail & Related papers (2024-03-25T20:44:46Z) - Optimal Control of Spin Qudits Subject to Decoherence Using Amplitude-and-Frequency-Constrained Pulses [44.99833362998488]
We introduce a formulation that allows us to bound the maximum amplitude and frequency of the signals.
The pulses we obtain consistently enhance operation fidelities compared to those achieved with Schr"odinger's equation.
arXiv Detail & Related papers (2024-03-23T10:10:38Z) - Robust Control of Single-Qubit Gates at the Quantum Speed Limit [0.0]
We investigate the underlying robust time-optimal control problem so as to make the best balance.
Based on the Taylor expansion of the system's unitary propagator, we formulate the design problem as the optimal control of an augmented finite-dimensional system.
Numerical simulations for single-qubit systems show that the obtained time-optimal control pulses can effectively suppress gate errors.
arXiv Detail & Related papers (2023-09-11T10:10:58Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - High-fidelity quantum control by polychromatic pulse trains [0.0]
We introduce a quantum control technique using polychromatic pulse sequences (PPS)
PPS consists of pulses with different carrier frequencies, i.e. different detunings with respect to the qubit transition frequency.
We derive numerous PPS, which generate broadband, narrowband, and passband excitation profiles for different target transition probabilities.
arXiv Detail & Related papers (2022-04-05T12:17:24Z) - Designing arbitrary single-axis rotations robust against perpendicular
time-dependent noise [0.0]
We introduce a protocol to design bounded and continuous control fields that implement arbitrary single-axis rotations.
We show the versatility of our method by presenting a set of non-negative-only control pulses.
arXiv Detail & Related papers (2021-03-15T16:26:57Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z) - Universal Composite Pulses for Efficient Population Inversion with an
Arbitrary Excitation Profile [0.0]
We introduce a method to rotate arbitrarily the profile of universal broadband composite pulse sequences for robust high-fidelity population inversion.
The rotation allows to achieve higher order universality to any combination of pulse area and detuning errors at no additional cost.
arXiv Detail & Related papers (2020-02-18T16:32:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.