Loss-Curvature Matching for Dataset Selection and Condensation
- URL: http://arxiv.org/abs/2303.04449v1
- Date: Wed, 8 Mar 2023 08:59:04 GMT
- Title: Loss-Curvature Matching for Dataset Selection and Condensation
- Authors: Seungjae Shin, Heesun Bae, Donghyeok Shin, Weonyoung Joo, Il-Chul Moon
- Abstract summary: Training neural networks on a large dataset requires substantial computational costs.
This paper introduces a new reduction objective, coined LCMat, which Matches the Loss Curvatures of the original dataset and reduced dataset over the model parameter space.
- Score: 13.354005476925176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training neural networks on a large dataset requires substantial
computational costs. Dataset reduction selects or synthesizes data instances
based on the large dataset, while minimizing the degradation in generalization
performance from the full dataset. Existing methods utilize the neural network
during the dataset reduction procedure, so the model parameter becomes
important factor in preserving the performance after reduction. By depending
upon the importance of parameters, this paper introduces a new reduction
objective, coined LCMat, which Matches the Loss Curvatures of the original
dataset and reduced dataset over the model parameter space, more than the
parameter point. This new objective induces a better adaptation of the reduced
dataset on the perturbed parameter region than the exact point matching.
Particularly, we identify the worst case of the loss curvature gap from the
local parameter region, and we derive the implementable upper bound of such
worst-case with theoretical analyses. Our experiments on both coreset selection
and condensation benchmarks illustrate that LCMat shows better generalization
performances than existing baselines.
Related papers
- Hierarchical Features Matter: A Deep Exploration of GAN Priors for Improved Dataset Distillation [51.44054828384487]
We propose a novel parameterization method dubbed Hierarchical Generative Latent Distillation (H-GLaD)
This method systematically explores hierarchical layers within the generative adversarial networks (GANs)
In addition, we introduce a novel class-relevant feature distance metric to alleviate the computational burden associated with synthetic dataset evaluation.
arXiv Detail & Related papers (2024-06-09T09:15:54Z) - Low-Rank Representations Meets Deep Unfolding: A Generalized and
Interpretable Network for Hyperspectral Anomaly Detection [41.50904949744355]
Current hyperspectral anomaly detection (HAD) benchmark datasets suffer from low resolution, simple background, and small size of the detection data.
These factors also limit the performance of the well-known low-rank representation (LRR) models in terms of robustness.
We build a new set of HAD benchmark datasets for improving the robustness of the HAD algorithm in complex scenarios, AIR-HAD for short.
arXiv Detail & Related papers (2024-02-23T14:15:58Z) - Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Random Linear Projections Loss for Hyperplane-Based Optimization in Neural Networks [22.348887008547653]
This work introduces Random Linear Projections (RLP) loss, a novel approach that enhances training efficiency by leveraging geometric relationships within the data.
Our empirical evaluations, conducted across benchmark datasets and synthetic examples, demonstrate that neural networks trained with RLP loss outperform those trained with traditional loss functions.
arXiv Detail & Related papers (2023-11-21T05:22:39Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Hyperparameter Optimization through Neural Network Partitioning [11.6941692990626]
We propose a simple and efficient way for optimizing hyper parameters in neural networks.
Our method partitions the training data and a neural network model into $K$ data shards and parameter partitions.
We demonstrate that we can apply this objective to optimize a variety of different hyper parameters in a single training run.
arXiv Detail & Related papers (2023-04-28T11:24:41Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
This paper provides the first theoretical characterization of joint edge-model sparse learning for graph neural networks (GNNs)
It proves analytically that both sampling important nodes and pruning neurons with the lowest-magnitude can reduce the sample complexity and improve convergence without compromising the test accuracy.
arXiv Detail & Related papers (2023-02-06T16:54:20Z) - Dataset Distillation using Neural Feature Regression [32.53291298089172]
We develop an algorithm for dataset distillation using neural Feature Regression with Pooling (FRePo)
FRePo achieves state-of-the-art performance with an order of magnitude less memory requirement and two orders of magnitude faster training than previous methods.
We show that high-quality distilled data can greatly improve various downstream applications, such as continual learning and membership inference defense.
arXiv Detail & Related papers (2022-06-01T19:02:06Z) - A Data-Centric Approach for Training Deep Neural Networks with Less Data [1.9014535120129343]
This paper summarizes our winning submission to the "Data-Centric AI" competition.
We discuss some of the challenges that arise while training with a small dataset.
We propose a GAN-based solution for synthesizing new data points.
arXiv Detail & Related papers (2021-10-07T16:41:52Z) - Adversarial Filters of Dataset Biases [96.090959788952]
Large neural models have demonstrated human-level performance on language and vision benchmarks.
Their performance degrades considerably on adversarial or out-of-distribution samples.
We propose AFLite, which adversarially filters such dataset biases.
arXiv Detail & Related papers (2020-02-10T21:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.