BaDLAD: A Large Multi-Domain Bengali Document Layout Analysis Dataset
- URL: http://arxiv.org/abs/2303.05325v3
- Date: Fri, 5 May 2023 07:35:54 GMT
- Title: BaDLAD: A Large Multi-Domain Bengali Document Layout Analysis Dataset
- Authors: Md. Istiak Hossain Shihab, Md. Rakibul Hasan, Mahfuzur Rahman Emon,
Syed Mobassir Hossen, Md. Nazmuddoha Ansary, Intesur Ahmed, Fazle Rabbi
Rakib, Shahriar Elahi Dhruvo, Souhardya Saha Dip, Akib Hasan Pavel, Marsia
Haque Meghla, Md. Rezwanul Haque, Sayma Sultana Chowdhury, Farig Sadeque,
Tahsin Reasat, Ahmed Imtiaz Humayun, Asif Shahriyar Sushmit
- Abstract summary: This dataset contains 33,695 human annotated document samples from six domains.
We demonstrate the efficacy of our dataset in training deep learning based Bengali document models.
- Score: 1.2015699532079325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While strides have been made in deep learning based Bengali Optical Character
Recognition (OCR) in the past decade, the absence of large Document Layout
Analysis (DLA) datasets has hindered the application of OCR in document
transcription, e.g., transcribing historical documents and newspapers.
Moreover, rule-based DLA systems that are currently being employed in practice
are not robust to domain variations and out-of-distribution layouts. To this
end, we present the first multidomain large Bengali Document Layout Analysis
Dataset: BaDLAD. This dataset contains 33,695 human annotated document samples
from six domains - i) books and magazines, ii) public domain govt. documents,
iii) liberation war documents, iv) newspapers, v) historical newspapers, and
vi) property deeds, with 710K polygon annotations for four unit types:
text-box, paragraph, image, and table. Through preliminary experiments
benchmarking the performance of existing state-of-the-art deep learning
architectures for English DLA, we demonstrate the efficacy of our dataset in
training deep learning based Bengali document digitization models.
Related papers
- VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented generation (RAG) is an effective technique that enables large language models to utilize external knowledge sources for generation.
In this paper, we introduce VisRAG, which tackles this issue by establishing a vision-language model (VLM)-based RAG pipeline.
In this pipeline, instead of first parsing the document to obtain text, the document is directly embedded using a VLM as an image and then retrieved to enhance the generation of a VLM.
arXiv Detail & Related papers (2024-10-14T15:04:18Z) - DELINE8K: A Synthetic Data Pipeline for the Semantic Segmentation of Historical Documents [0.0]
Document semantic segmentation can facilitate document analysis tasks, including OCR, form classification, and document editing.
Several synthetic datasets have been developed to distinguish handwriting from printed text, but they fall short in class variety and document diversity.
We propose the most comprehensive document semantic segmentation pipeline to date, incorporating preprinted text, handwriting, and document backgrounds from over 10 sources.
Our customized dataset exhibits superior performance on the NAFSS benchmark, demonstrating it as a promising tool in further research.
arXiv Detail & Related papers (2024-04-30T04:53:10Z) - Bengali Document Layout Analysis with Detectron2 [0.0]
Document layout analysis involves segmenting documents into meaningful units like text boxes, paragraphs, images, and tables.
We improved the accuracy of the DLA model for Bengali documents by utilizing advanced Mask R-CNN models available in the Detectron2 library.
Results show the effectiveness of these models in accurately segmenting Bengali documents.
arXiv Detail & Related papers (2023-08-26T05:29:09Z) - DocumentNet: Bridging the Data Gap in Document Pre-Training [78.01647768018485]
We propose a method to collect massive-scale and weakly labeled data from the web to benefit the training of VDER models.
The collected dataset, named DocumentNet, does not depend on specific document types or entity sets.
Experiments on a set of broadly adopted VDER tasks show significant improvements when DocumentNet is incorporated into the pre-training.
arXiv Detail & Related papers (2023-06-15T08:21:15Z) - Document Layout Annotation: Database and Benchmark in the Domain of
Public Affairs [62.38140271294419]
We propose a procedure to semi-automatically annotate digital documents with different layout labels.
We collect a novel database for DLA in the public affairs domain using a set of 24 data sources from the Spanish Administration.
The results of our experiments validate the proposed text labeling procedure with accuracy up to 99%.
arXiv Detail & Related papers (2023-06-12T08:21:50Z) - Cross-Domain Document Layout Analysis Using Document Style Guide [15.799572801059716]
Document layout analysis (DLA) aims to decompose document images into high-level semantic areas.
Many researchers devoted this challenge by synthesizing data to build large training sets.
In this paper, we propose an unsupervised cross-domain DLA framework based on document style guidance.
arXiv Detail & Related papers (2022-01-24T00:49:19Z) - CDA: a Cost Efficient Content-based Multilingual Web Document Aligner [97.98885151955467]
We introduce a Content-based Document Alignment approach to align multilingual web documents based on content.
We leverage lexical translation models to build vector representations using TF-IDF.
Experiments show that CDA is robust, cost-effective, and is significantly superior in (i) processing large and noisy web data and (ii) scaling to new and low-resourced languages.
arXiv Detail & Related papers (2021-02-20T03:37:23Z) - DocBank: A Benchmark Dataset for Document Layout Analysis [114.81155155508083]
We present textbfDocBank, a benchmark dataset that contains 500K document pages with fine-grained token-level annotations for document layout analysis.
Experiment results show that models trained on DocBank accurately recognize the layout information for a variety of documents.
arXiv Detail & Related papers (2020-06-01T16:04:30Z) - Cross-Domain Document Object Detection: Benchmark Suite and Method [71.4339949510586]
Document object detection (DOD) is fundamental for downstream tasks like intelligent document editing and understanding.
We investigate cross-domain DOD, where the goal is to learn a detector for the target domain using labeled data from the source domain and only unlabeled data from the target domain.
For each dataset, we provide the page images, bounding box annotations, PDF files, and the rendering layers extracted from the PDF files.
arXiv Detail & Related papers (2020-03-30T03:04:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.