Understanding the Challenges and Opportunities of Pose-based Anomaly
Detection
- URL: http://arxiv.org/abs/2303.05463v1
- Date: Thu, 9 Mar 2023 18:09:45 GMT
- Title: Understanding the Challenges and Opportunities of Pose-based Anomaly
Detection
- Authors: Ghazal Alinezhad Noghre, Armin Danesh Pazho, Vinit Katariya, Hamed
Tabkhi
- Abstract summary: Pose-based anomaly detection is a video-analysis technique for detecting anomalous events or behaviors by examining human pose extracted from the video frames.
In this work, we analyze and quantify the characteristics of two well-known video anomaly datasets to better understand the difficulties of pose-based anomaly detection.
We believe these experiments are beneficial for a better comprehension of pose-based anomaly detection and the datasets currently available.
- Score: 2.924868086534434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pose-based anomaly detection is a video-analysis technique for detecting
anomalous events or behaviors by examining human pose extracted from the video
frames. Utilizing pose data alleviates privacy and ethical issues. Also,
computation-wise, the complexity of pose-based models is lower than pixel-based
approaches. However, it introduces more challenges, such as noisy skeleton
data, losing important pixel information, and not having enriched enough
features. These problems are exacerbated by a lack of anomaly detection
datasets that are good enough representatives of real-world scenarios. In this
work, we analyze and quantify the characteristics of two well-known video
anomaly datasets to better understand the difficulties of pose-based anomaly
detection. We take a step forward, exploring the discriminating power of pose
and trajectory for video anomaly detection and their effectiveness based on
context. We believe these experiments are beneficial for a better comprehension
of pose-based anomaly detection and the datasets currently available. This will
aid researchers in tackling the task of anomaly detection with a more lucid
perspective, accelerating the development of robust models with better
performance.
Related papers
- VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs [64.60035916955837]
VANE-Bench is a benchmark designed to assess the proficiency of Video-LMMs in detecting anomalies and inconsistencies in videos.
Our dataset comprises an array of videos synthetically generated using existing state-of-the-art text-to-video generation models.
We evaluate nine existing Video-LMMs, both open and closed sources, on this benchmarking task and find that most of the models encounter difficulties in effectively identifying the subtle anomalies.
arXiv Detail & Related papers (2024-06-14T17:59:01Z) - SplatPose & Detect: Pose-Agnostic 3D Anomaly Detection [18.796625355398252]
State-of-the-art algorithms are able to detect defects in increasingly difficult settings and data modalities.
We propose the novel 3D Gaussian splatting-based framework SplatPose which accurately estimates the pose of unseen views in a differentiable manner.
We achieve state-of-the-art results in both training and inference speed, and detection performance, even when using less training data than competing methods.
arXiv Detail & Related papers (2024-04-10T08:48:09Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - PAD: A Dataset and Benchmark for Pose-agnostic Anomaly Detection [28.973078719467516]
We develop Multi-pose Anomaly Detection dataset and Pose-agnostic Anomaly Detection benchmark.
Specifically, we build MAD using 20 complex-shaped LEGO toys with various poses, and high-quality and diverse 3D anomalies in both simulated and real environments.
We also propose a novel method OmniposeAD, trained using MAD, specifically designed for pose-agnostic anomaly detection.
arXiv Detail & Related papers (2023-10-11T17:59:56Z) - Explainable Anomaly Detection in Images and Videos: A Survey [49.07140708026425]
Anomaly detection and localization of visual data, including images and videos, are of great significance in machine learning academia and applied real-world scenarios.
Despite the rapid development of visual anomaly detection techniques in recent years, the interpretations of these black-box models and reasonable explanations of why anomalies can be distinguished out are scarce.
This paper provides the first survey concentrated on explainable visual anomaly detection methods.
arXiv Detail & Related papers (2023-02-13T20:17:41Z) - CHAD: Charlotte Anomaly Dataset [2.6774008509840996]
We present the Charlotte Anomaly dataset (CHAD) for video anomaly detection.
CHAD is the first anomaly dataset to include bounding box, identity, and pose annotations for each actor.
With four camera views and over 1.15 million frames, CHAD is the largest fully annotated anomaly detection dataset.
arXiv Detail & Related papers (2022-12-19T06:05:34Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Anomalous entities detection using a cascade of deep learning models [2.9005223064604078]
This paper presents a new approach to detect anomalous entities in complex situations of examination halls.
The proposed method uses a cascade of deep convolutional neural network models.
Our results show that the proposed method can detect anomalous entities and warrant unusual behavior with high accuracy.
arXiv Detail & Related papers (2021-03-09T01:23:19Z) - Video Anomaly Detection by Estimating Likelihood of Representations [21.879366166261228]
Video anomaly is a challenging task because it involves solving many sub-tasks such as motion representation, object localization and action recognition.
Traditionally, solutions to this task have focused on the mapping between video frames and their low-dimensional features, while ignoring the spatial connections of those features.
Recent solutions focus on analyzing these spatial connections by using hard clustering techniques, such as K-Means, or applying neural networks to map latent features to a general understanding.
In order to solve video anomaly in the latent feature space, we propose a deep probabilistic model to transfer this task into a density estimation problem.
arXiv Detail & Related papers (2020-12-02T19:16:22Z) - VideoForensicsHQ: Detecting High-quality Manipulated Face Videos [77.60295082172098]
We show how the performance of forgery detectors depends on the presence of artefacts that the human eye can see.
We introduce a new benchmark dataset for face video forgery detection, of unprecedented quality.
arXiv Detail & Related papers (2020-05-20T21:17:43Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods.
We devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data.
arXiv Detail & Related papers (2020-03-15T08:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.