Learning Stationary Markov Processes with Contrastive Adjustment
- URL: http://arxiv.org/abs/2303.05497v1
- Date: Thu, 9 Mar 2023 18:50:15 GMT
- Title: Learning Stationary Markov Processes with Contrastive Adjustment
- Authors: Ludvig Bergenstr{\aa}hle, Jens Lagergren, Joakim Lundeberg
- Abstract summary: We introduce a new optimization algorithm, termed emphcontrastive adjustment, for learning Markov transition kernels.
Contrastive adjustment is not restricted to a particular family of transition distributions and can be used to model data in both continuous and discrete state spaces.
We show that contrastive adjustment is highly valuable in human-computer design processes.
- Score: 2.76240219662896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new optimization algorithm, termed \emph{contrastive
adjustment}, for learning Markov transition kernels whose stationary
distribution matches the data distribution. Contrastive adjustment is not
restricted to a particular family of transition distributions and can be used
to model data in both continuous and discrete state spaces. Inspired by recent
work on noise-annealed sampling, we propose a particular transition operator,
the \emph{noise kernel}, that can trade mixing speed for sample fidelity. We
show that contrastive adjustment is highly valuable in human-computer design
processes, as the stationarity of the learned Markov chain enables local
exploration of the data manifold and makes it possible to iteratively refine
outputs by human feedback. We compare the performance of noise kernels trained
with contrastive adjustment to current state-of-the-art generative models and
demonstrate promising results on a variety of image synthesis tasks.
Related papers
- Noise Conditional Variational Score Distillation [60.38982038894823]
Noise Conditional Variational Score Distillation (NCVSD) is a novel method for distilling pretrained diffusion models into generative denoisers.<n>By integrating this insight into the Variational Score Distillation framework, we enable scalable learning of generative denoisers.
arXiv Detail & Related papers (2025-06-11T06:01:39Z) - Distributional Diffusion Models with Scoring Rules [83.38210785728994]
Diffusion models generate high-quality synthetic data.
generating high-quality outputs requires many discretization steps.
We propose to accomplish sample generation by learning the posterior em distribution of clean data samples.
arXiv Detail & Related papers (2025-02-04T16:59:03Z) - Beyond Fixed Horizons: A Theoretical Framework for Adaptive Denoising Diffusions [1.9116784879310031]
We introduce a new class of generative diffusion models that achieve a time-homogeneous structure for both the noising and denoising processes.<n>A key feature of the model is its adaptability to the target data, enabling a variety of downstream tasks using a pre-trained unconditional generative model.
arXiv Detail & Related papers (2025-01-31T18:23:27Z) - RDPM: Solve Diffusion Probabilistic Models via Recurrent Token Prediction [17.005198258689035]
Diffusion Probabilistic Models (DPMs) have emerged as the de facto approach for high-fidelity image synthesis.
We introduce a novel generative framework, the Recurrent Diffusion Probabilistic Model (RDPM), which enhances the diffusion process through a recurrent token prediction mechanism.
arXiv Detail & Related papers (2024-12-24T12:28:19Z) - Efficient Diffusion Transformer with Step-wise Dynamic Attention Mediators [83.48423407316713]
We present a novel diffusion transformer framework incorporating an additional set of mediator tokens to engage with queries and keys separately.
Our model initiates the denoising process with a precise, non-ambiguous stage and gradually transitions to a phase enriched with detail.
Our method achieves a state-of-the-art FID score of 2.01 when integrated with the recent work SiT.
arXiv Detail & Related papers (2024-08-11T07:01:39Z) - Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps [28.229819253644862]
We propose a method to parameterize and train transition kernels of Markov chains to achieve efficient sampling and good mixing.
This training procedure minimizes the total variation distance between the stationary distribution of the chain and the empirical distribution of the data.
arXiv Detail & Related papers (2024-06-04T17:00:14Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
We propose an adaptive momentum sampling method to accelerate the transforming process.
We show that our method can produce more faithful images/graphs in small sampling steps with 2 to 5 times speed up.
arXiv Detail & Related papers (2024-05-22T15:20:27Z) - ALERT-Transformer: Bridging Asynchronous and Synchronous Machine Learning for Real-Time Event-based Spatio-Temporal Data [8.660721666999718]
We propose a hybrid pipeline composed of asynchronous sensing and synchronous processing.
We achieve performances state-of-the-art with a lower latency than competitors.
arXiv Detail & Related papers (2024-02-02T13:17:19Z) - Observation-Guided Diffusion Probabilistic Models [41.749374023639156]
We propose a novel diffusion-based image generation method called the observation-guided diffusion probabilistic model (OGDM)
Our approach reestablishes the training objective by integrating the guidance of the observation process with the Markov chain.
We demonstrate the effectiveness of our training algorithm using diverse inference techniques on strong diffusion model baselines.
arXiv Detail & Related papers (2023-10-06T06:29:06Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Latent Class-Conditional Noise Model [54.56899309997246]
We introduce a Latent Class-Conditional Noise model (LCCN) to parameterize the noise transition under a Bayesian framework.
We then deduce a dynamic label regression method for LCCN, whose Gibbs sampler allows us efficiently infer the latent true labels.
Our approach safeguards the stable update of the noise transition, which avoids previous arbitrarily tuning from a mini-batch of samples.
arXiv Detail & Related papers (2023-02-19T15:24:37Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Diffusion-Based Representation Learning [65.55681678004038]
We augment the denoising score matching framework to enable representation learning without any supervised signal.
In contrast, the introduced diffusion-based representation learning relies on a new formulation of the denoising score matching objective.
Using the same approach, we propose to learn an infinite-dimensional latent code that achieves improvements of state-of-the-art models on semi-supervised image classification.
arXiv Detail & Related papers (2021-05-29T09:26:02Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
Contrastive learning is a family of self-supervised methods where a model is trained to solve a classification task constructed from unlabeled data.
We show that a properly constructed contrastive learning task can be used to estimate the transition kernel for small-to-mid-range intervals in the diffusion case.
arXiv Detail & Related papers (2021-03-03T23:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.