Self-Supervised One-Shot Learning for Automatic Segmentation of StyleGAN
Images
- URL: http://arxiv.org/abs/2303.05639v3
- Date: Mon, 23 Oct 2023 17:40:57 GMT
- Title: Self-Supervised One-Shot Learning for Automatic Segmentation of StyleGAN
Images
- Authors: Ankit Manerikar and Avinash C. Kak
- Abstract summary: We propose a framework for the automatic one-shot segmentation of synthetic images generated by a StyleGAN.
Our framework learns to segment synthetic images using a self-supervised contrastive clustering algorithm.
We also show the results of using the proposed one-shot learner in implementing BagGAN, a framework for producing synthetic baggage X-ray scans for threat detection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a framework for the automatic one-shot segmentation of synthetic
images generated by a StyleGAN. Our framework is based on the observation that
the multi-scale hidden features in the GAN generator hold useful semantic
information that can be utilized for automatic on-the-fly segmentation of the
generated images. Using these features, our framework learns to segment
synthetic images using a self-supervised contrastive clustering algorithm that
projects the hidden features into a compact space for per-pixel classification.
This contrastive learner is based on using a novel data augmentation strategy
and a pixel-wise swapped prediction loss that leads to faster learning of the
feature vectors for one-shot segmentation. We have tested our implementation on
five standard benchmarks to yield a segmentation performance that not only
outperforms the semi-supervised baselines by an average wIoU margin of 1.02 %
but also improves the inference speeds by a factor of 4.5. Finally, we also
show the results of using the proposed one-shot learner in implementing BagGAN,
a framework for producing annotated synthetic baggage X-ray scans for threat
detection. This framework was trained and tested on the PIDRay baggage
benchmark to yield a performance comparable to its baseline segmenter based on
manual annotations.
Related papers
- Boosting Few-Shot Segmentation via Instance-Aware Data Augmentation and
Local Consensus Guided Cross Attention [7.939095881813804]
Few-shot segmentation aims to train a segmentation model that can fast adapt to a novel task for which only a few annotated images are provided.
We introduce an instance-aware data augmentation (IDA) strategy that augments the support images based on the relative sizes of the target objects.
The proposed IDA effectively increases the support set's diversity and promotes the distribution consistency between support and query images.
arXiv Detail & Related papers (2024-01-18T10:29:10Z) - Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
This paper focuses on tackling semi-supervised part segmentation tasks by generating high-quality images with a pre-trained GAN.
In particular, we formulate the annotator learning as a learning-to-learn problem.
We show that our method can learn annotators from a broad range of labelled images including real images, generated images, and even analytically rendered images.
arXiv Detail & Related papers (2022-11-06T01:29:22Z) - A Simple Baseline for Zero-shot Semantic Segmentation with Pre-trained
Vision-language Model [61.58071099082296]
It is unclear how to make zero-shot recognition working well on broader vision problems, such as object detection and semantic segmentation.
In this paper, we target for zero-shot semantic segmentation, by building it on an off-the-shelf pre-trained vision-language model, i.e., CLIP.
Our experimental results show that this simple framework surpasses previous state-of-the-arts by a large margin.
arXiv Detail & Related papers (2021-12-29T18:56:18Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples.
Most of advanced solutions exploit a metric learning framework that performs segmentation through matching each pixel to a learned foreground prototype.
This framework suffers from biased classification due to incomplete construction of sample pairs with the foreground prototype only.
arXiv Detail & Related papers (2021-04-19T11:21:47Z) - Self-Guided and Cross-Guided Learning for Few-Shot Segmentation [12.899804391102435]
We propose a self-guided learning approach for few-shot segmentation.
By making an initial prediction for the annotated support image, the covered and uncovered foreground regions are encoded to the primary and auxiliary support vectors.
By aggregating both primary and auxiliary support vectors, better segmentation performances are obtained on query images.
arXiv Detail & Related papers (2021-03-30T07:36:41Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - Dense Contrastive Learning for Self-Supervised Visual Pre-Training [102.15325936477362]
We present dense contrastive learning, which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images.
Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only 1% slower)
arXiv Detail & Related papers (2020-11-18T08:42:32Z) - Self-Supervised Tuning for Few-Shot Segmentation [82.32143982269892]
Few-shot segmentation aims at assigning a category label to each image pixel with few annotated samples.
Existing meta-learning method tends to fail in generating category-specifically discriminative descriptor when the visual features extracted from support images are marginalized in embedding space.
This paper presents an adaptive framework tuning, in which the distribution of latent features across different episodes is dynamically adjusted based on a self-segmentation scheme.
arXiv Detail & Related papers (2020-04-12T03:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.