Vertical Federated Graph Neural Network for Recommender System
- URL: http://arxiv.org/abs/2303.05786v3
- Date: Tue, 27 Aug 2024 01:31:35 GMT
- Title: Vertical Federated Graph Neural Network for Recommender System
- Authors: Peihua Mai, Yan Pang,
- Abstract summary: Graph neural network (GNN) is becoming a promising approach for federated recommender systems.
Our study proposes the first vertical federated GNN-based recommender system, called VerFedGNN.
- Score: 1.7802147489386633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional recommender systems are required to train the recommendation model using a centralized database. However, due to data privacy concerns, this is often impractical when multi-parties are involved in recommender system training. Federated learning appears as an excellent solution to the data isolation and privacy problem. Recently, Graph neural network (GNN) is becoming a promising approach for federated recommender systems. However, a key challenge is to conduct embedding propagation while preserving the privacy of the graph structure. Few studies have been conducted on the federated GNN-based recommender system. Our study proposes the first vertical federated GNN-based recommender system, called VerFedGNN. We design a framework to transmit: (i) the summation of neighbor embeddings using random projection, and (ii) gradients of public parameter perturbed by ternary quantization mechanism. Empirical studies show that VerFedGNN has competitive prediction accuracy with existing privacy preserving GNN frameworks while enhanced privacy protection for users' interaction information.
Related papers
- IDEA: A Flexible Framework of Certified Unlearning for Graph Neural Networks [68.6374698896505]
Graph Neural Networks (GNNs) have been increasingly deployed in a plethora of applications.
Privacy leakage may happen when the trained GNNs are deployed and exposed to potential attackers.
We propose a principled framework named IDEA to achieve flexible and certified unlearning for GNNs.
arXiv Detail & Related papers (2024-07-28T04:59:59Z) - Linear-Time Graph Neural Networks for Scalable Recommendations [50.45612795600707]
The key of recommender systems is to forecast users' future behaviors based on previous user-item interactions.
Recent years have witnessed a rising interest in leveraging Graph Neural Networks (GNNs) to boost the prediction performance of recommender systems.
We propose a Linear-Time Graph Neural Network (LTGNN) to scale up GNN-based recommender systems to achieve comparable scalability as classic MF approaches.
arXiv Detail & Related papers (2024-02-21T17:58:10Z) - Differentially Private Graph Neural Network with Importance-Grained
Noise Adaption [6.319864669924721]
Graph Neural Networks (GNNs) with differential privacy have been proposed to preserve graph privacy when nodes represent personal and sensitive information.
We study the problem of importance-grained privacy, where nodes contain personal data that need to be kept private but are critical for training a GNN.
We propose NAP-GNN, a node-grained privacy-preserving GNN algorithm with privacy guarantees based on adaptive differential privacy to safeguard node information.
arXiv Detail & Related papers (2023-08-09T13:18:41Z) - GNN4FR: A Lossless GNN-based Federated Recommendation Framework [13.672867761388675]
Graph neural networks (GNNs) have gained wide popularity in recommender systems.
Our framework achieves full-graph training with complete high-order structure information.
In addition, we use LightGCN to instantiate an example of our framework and show its equivalence.
arXiv Detail & Related papers (2023-07-25T16:55:17Z) - Semi-decentralized Federated Ego Graph Learning for Recommendation [58.21409625065663]
We propose a semi-decentralized federated ego graph learning framework for on-device recommendations, named SemiDFEGL.
The proposed framework is model-agnostic, meaning that it could be seamlessly integrated with existing graph neural network-based recommendation methods and privacy protection techniques.
arXiv Detail & Related papers (2023-02-10T03:57:45Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - GAP: Differentially Private Graph Neural Networks with Aggregation
Perturbation [19.247325210343035]
Graph Neural Networks (GNNs) are powerful models designed for graph data that learn node representation.
Recent studies have shown that GNNs can raise significant privacy concerns when graph data contain sensitive information.
We propose GAP, a novel differentially private GNN that safeguards privacy of nodes and edges.
arXiv Detail & Related papers (2022-03-02T08:58:07Z) - Federated Social Recommendation with Graph Neural Network [69.36135187771929]
We propose fusing social information with user-item interactions to alleviate it, which is the social recommendation problem.
We devise a novel framework textbfFedrated textbfSocial recommendation with textbfGraph neural network (FeSoG)
arXiv Detail & Related papers (2021-11-21T09:41:39Z) - Releasing Graph Neural Networks with Differential Privacy Guarantees [0.81308403220442]
We propose PrivGNN, a privacy-preserving framework for releasing GNN models in a centralized setting.
PrivGNN combines the knowledge-distillation framework with the two noise mechanisms, random subsampling, and noisy labeling, to ensure rigorous privacy guarantees.
arXiv Detail & Related papers (2021-09-18T11:35:19Z) - FedGraphNN: A Federated Learning System and Benchmark for Graph Neural
Networks [68.64678614325193]
Graph Neural Network (GNN) research is rapidly growing thanks to the capacity of GNNs to learn representations from graph-structured data.
Centralizing a massive amount of real-world graph data for GNN training is prohibitive due to user-side privacy concerns.
We introduce FedGraphNN, an open research federated learning system and a benchmark to facilitate GNN-based FL research.
arXiv Detail & Related papers (2021-04-14T22:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.