Lossless Point Cloud Geometry and Attribute Compression Using a Learned Conditional Probability Model
- URL: http://arxiv.org/abs/2303.06519v2
- Date: Wed, 20 Mar 2024 10:00:15 GMT
- Title: Lossless Point Cloud Geometry and Attribute Compression Using a Learned Conditional Probability Model
- Authors: Dat Thanh Nguyen, Andre Kaup,
- Abstract summary: We present an efficient point cloud compression method that uses tensor-based deep neural networks to learn point cloud geometry and color probability.
Our method represents a point cloud with both occupancy feature and three features at different bit depths in a unified representation.
- Score: 2.670322123407995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, we have witnessed the presence of point cloud data in many aspects of our life, from immersive media, autonomous driving to healthcare, although at the cost of a tremendous amount of data. In this paper, we present an efficient lossless point cloud compression method that uses sparse tensor-based deep neural networks to learn point cloud geometry and color probability distributions. Our method represents a point cloud with both occupancy feature and three attribute features at different bit depths in a unified sparse representation. This allows us to efficiently exploit feature-wise and point-wise dependencies within point clouds using a sparse tensor-based neural network and thus build an accurate auto-regressive context model for an arithmetic coder. To the best of our knowledge, this is the first learning-based lossless point cloud geometry and attribute compression approach. Compared with the-state-of-the-art lossless point cloud compression method from Moving Picture Experts Group (MPEG), our method achieves 22.6% reduction in total bitrate on a diverse set of test point clouds while having 49.0% and 18.3% rate reduction on geometry and color attribute component, respectively.
Related papers
- Att2CPC: Attention-Guided Lossy Attribute Compression of Point Clouds [18.244200436103156]
We propose an efficient attention-based method for lossy compression of point cloud attributes leveraging on an autoencoder architecture.
Experiments show that our method achieves an average improvement of 1.15 dB and 2.13 dB in BD-PSNR of Y channel and YUV channel, respectively.
arXiv Detail & Related papers (2024-10-23T12:32:21Z) - Point Cloud Compression with Bits-back Coding [32.9521748764196]
This paper specializes in using a deep learning-based probabilistic model to estimate the Shannon's entropy of the point cloud information.
Once the entropy of the point cloud dataset is estimated, we use the learned CVAE model to compress the geometric attributes of the point clouds.
The novelty of our method with bits-back coding specializes in utilizing the learned latent variable model of the CVAE to compress the point cloud data.
arXiv Detail & Related papers (2024-10-09T06:34:48Z) - PVContext: Hybrid Context Model for Point Cloud Compression [61.24130634750288]
We propose PVContext, a hybrid context model for effective octree-based point cloud compression.
PVContext comprises two components with distinct modalities: the Voxel Context, which accurately represents local geometric information using voxels, and the Point Context, which efficiently preserves global shape information from point clouds.
arXiv Detail & Related papers (2024-09-19T12:47:35Z) - Point Cloud Compression with Implicit Neural Representations: A Unified Framework [54.119415852585306]
We present a pioneering point cloud compression framework capable of handling both geometry and attribute components.
Our framework utilizes two coordinate-based neural networks to implicitly represent a voxelized point cloud.
Our method exhibits high universality when contrasted with existing learning-based techniques.
arXiv Detail & Related papers (2024-05-19T09:19:40Z) - Zero-Shot Point Cloud Registration [94.39796531154303]
ZeroReg is the first zero-shot point cloud registration approach that eliminates the need for training on point cloud datasets.
The cornerstone of ZeroReg is the novel transfer of image features from keypoints to the point cloud, enriched by aggregating information from 3D geometric neighborhoods.
On benchmarks such as 3DMatch, 3DLoMatch, and ScanNet, ZeroReg achieves impressive Recall Ratios (RR) of over 84%, 46%, and 75%, respectively.
arXiv Detail & Related papers (2023-12-05T11:33:16Z) - Clustering based Point Cloud Representation Learning for 3D Analysis [80.88995099442374]
We propose a clustering based supervised learning scheme for point cloud analysis.
Unlike current de-facto, scene-wise training paradigm, our algorithm conducts within-class clustering on the point embedding space.
Our algorithm shows notable improvements on famous point cloud segmentation datasets.
arXiv Detail & Related papers (2023-07-27T03:42:12Z) - GQE-Net: A Graph-based Quality Enhancement Network for Point Cloud Color
Attribute [51.4803148196217]
We propose a graph-based quality enhancement network (GQE-Net) to reduce color distortion in point clouds.
GQE-Net uses geometry information as an auxiliary input and graph convolution blocks to extract local features efficiently.
Experimental results show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-24T02:33:45Z) - GRASP-Net: Geometric Residual Analysis and Synthesis for Point Cloud
Compression [16.98171403698783]
We propose a heterogeneous approach with deep learning for lossy point cloud geometry compression.
Specifically, a point-based network is applied to convert the erratic local details to latent features residing on the coarse point cloud.
arXiv Detail & Related papers (2022-09-09T17:09:02Z) - Variable Rate Compression for Raw 3D Point Clouds [5.107705550575662]
We propose a novel variable rate deep compression architecture that operates on raw 3D point cloud data.
Our network is capable of explicitly processing point clouds and generating a compressed description.
arXiv Detail & Related papers (2022-02-28T15:15:39Z) - CP-Net: Contour-Perturbed Reconstruction Network for Self-Supervised
Point Cloud Learning [53.1436669083784]
We propose a generic Contour-Perturbed Reconstruction Network (CP-Net), which can effectively guide self-supervised reconstruction to learn semantic content in the point cloud.
For classification, we get a competitive result with the fully-supervised methods on ModelNet40 (92.5% accuracy) and ScanObjectNN (87.9% accuracy)
arXiv Detail & Related papers (2022-01-20T15:04:12Z) - Learning-based lossless compression of 3D point cloud geometry [11.69103847045569]
encoder operates in a hybrid mode, mixing octree and voxel-based coding.
Our method outperforms the state-of-the-art MPEG G-PCC standard with average rate savings of 28%.
arXiv Detail & Related papers (2020-11-30T11:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.