Improve Retrieval-based Dialogue System via Syntax-Informed Attention
- URL: http://arxiv.org/abs/2303.06605v1
- Date: Sun, 12 Mar 2023 08:14:16 GMT
- Title: Improve Retrieval-based Dialogue System via Syntax-Informed Attention
- Authors: Tengtao Song, Nuo Chen, Ji Jiang, Zhihong Zhu, Yuexian Zou
- Abstract summary: We propose SIA, Syntax-Informed Attention, considering both intra- and inter-sentence syntax information.
We evaluate our method on three widely used benchmarks and experimental results demonstrate the general superiority of our method on dialogue response selection.
- Score: 46.79601705850277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-turn response selection is a challenging task due to its high demands
on efficient extraction of the matching features from abundant information
provided by context utterances. Since incorporating syntactic information like
dependency structures into neural models can promote a better understanding of
the sentences, such a method has been widely used in NLP tasks. Though
syntactic information helps models achieved pleasing results, its application
in retrieval-based dialogue systems has not been fully explored. Meanwhile,
previous works focus on intra-sentence syntax alone, which is far from
satisfactory for the task of multi-turn response where dialogues usually
contain multiple sentences. To this end, we propose SIA, Syntax-Informed
Attention, considering both intra- and inter-sentence syntax information. While
the former restricts attention scope to only between tokens and corresponding
dependents in the syntax tree, the latter allows attention in cross-utterance
pairs for those syntactically important tokens. We evaluate our method on three
widely used benchmarks and experimental results demonstrate the general
superiority of our method on dialogue response selection.
Related papers
- Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue [22.103162555263143]
We introduce contrastive learning and multi-task learning to jointly model the problem.
Our proposed model achieves state-of-the-art performance on several public datasets.
arXiv Detail & Related papers (2022-03-22T10:13:27Z) - Who says like a style of Vitamin: Towards Syntax-Aware
DialogueSummarization using Multi-task Learning [2.251583286448503]
We focus on the association between utterances from individual speakers and unique syntactic structures.
Speakers have unique textual styles that can contain linguistic information, such as voiceprint.
We employ multi-task learning of both syntax-aware information and dialogue summarization.
arXiv Detail & Related papers (2021-09-29T05:30:39Z) - DialogueCSE: Dialogue-based Contrastive Learning of Sentence Embeddings [33.89889949577356]
We propose DialogueCSE, a dialogue-based contrastive learning approach to tackle this issue.
We evaluate our model on three multi-turn dialogue datasets: the Microsoft Dialogue Corpus, the Jing Dong Dialogue Corpus, and the E-commerce Dialogue Corpus.
arXiv Detail & Related papers (2021-09-26T13:25:41Z) - Self-supervised Dialogue Learning for Spoken Conversational Question
Answering [29.545937716796082]
In spoken conversational question answering (SCQA), the answer to the corresponding question is generated by retrieving and then analyzing a fixed spoken document, including multi-part conversations.
We introduce a self-supervised learning approach, including incoherence discrimination, insertion detection, and question prediction, to explicitly capture the coreference resolution and dialogue coherence.
Our proposed method provides more coherent, meaningful, and appropriate responses, yielding superior performance gains compared to the original pre-trained language models.
arXiv Detail & Related papers (2021-06-04T00:09:38Z) - Structural Pre-training for Dialogue Comprehension [51.215629336320305]
We present SPIDER, Structural Pre-traIned DialoguE Reader, to capture dialogue exclusive features.
To simulate the dialogue-like features, we propose two training objectives in addition to the original LM objectives.
Experimental results on widely used dialogue benchmarks verify the effectiveness of the newly introduced self-supervised tasks.
arXiv Detail & Related papers (2021-05-23T15:16:54Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - Multi-turn Dialogue Reading Comprehension with Pivot Turns and Knowledge [43.352833140317486]
Multi-turn dialogue reading comprehension aims to teach machines to read dialogue contexts and solve tasks such as response selection and answering questions.
This work makes the first attempt to tackle the above two challenges by extracting substantially important turns as pivot utterances.
We propose a pivot-oriented deep selection model (PoDS) on top of the Transformer-based language models for dialogue comprehension.
arXiv Detail & Related papers (2021-02-10T15:00:12Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
We tackle conversational passage retrieval (ConvPR) with query reformulation integrated into a multi-stage ad-hoc IR system.
We propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting.
For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals.
For the latter, we reformulate conversational queries into natural, standalone, human-understandable queries with a pretrained sequence-tosequence model.
arXiv Detail & Related papers (2020-05-05T14:30:20Z) - Dialogue-Based Relation Extraction [53.2896545819799]
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE.
We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks.
Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings.
arXiv Detail & Related papers (2020-04-17T03:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.