A Coarse-to-Fine Place Recognition Approach using Attention-guided Descriptors and Overlap Estimation
- URL: http://arxiv.org/abs/2303.06881v3
- Date: Tue, 23 Jul 2024 02:40:36 GMT
- Title: A Coarse-to-Fine Place Recognition Approach using Attention-guided Descriptors and Overlap Estimation
- Authors: Chencan Fu, Lin Li, Jianbiao Mei, Yukai Ma, Linpeng Peng, Xiangrui Zhao, Yong Liu,
- Abstract summary: We present a novel coarse-to-fine approach to place recognition.
In the coarse stage, our approach utilizes an attention-guided network to generate attention-guided descriptors.
We then employ a fast affinity-based candidate selection process to identify the Top-K most similar candidates.
In the fine stage, we estimate pairwise overlap among the narrowed-down place candidates to determine the final match.
- Score: 13.018093610656507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Place recognition is a challenging but crucial task in robotics. Current description-based methods may be limited by representation capabilities, while pairwise similarity-based methods require exhaustive searches, which is time-consuming. In this paper, we present a novel coarse-to-fine approach to address these problems, which combines BEV (Bird's Eye View) feature extraction, coarse-grained matching and fine-grained verification. In the coarse stage, our approach utilizes an attention-guided network to generate attention-guided descriptors. We then employ a fast affinity-based candidate selection process to identify the Top-K most similar candidates. In the fine stage, we estimate pairwise overlap among the narrowed-down place candidates to determine the final match. Experimental results on the KITTI and KITTI-360 datasets demonstrate that our approach outperforms state-of-the-art methods. The code will be released publicly soon.
Related papers
- Keypoint Promptable Re-Identification [76.31113049256375]
Occluded Person Re-Identification (ReID) is a metric learning task that involves matching occluded individuals based on their appearance.
We introduce Keypoint Promptable ReID (KPR), a novel formulation of the ReID problem that explicitly complements the input bounding box with a set of semantic keypoints.
We release custom keypoint labels for four popular ReID benchmarks. Experiments on person retrieval, but also on pose tracking, demonstrate that our method systematically surpasses previous state-of-the-art approaches.
arXiv Detail & Related papers (2024-07-25T15:20:58Z) - HCPM: Hierarchical Candidates Pruning for Efficient Detector-Free Matching [43.50525492577969]
HCPM is an efficient and detector-free local feature-matching method that employs hierarchical pruning to optimize the matching pipeline.
Our results reveal that HCPM significantly surpasses existing methods in terms of speed while maintaining high accuracy.
arXiv Detail & Related papers (2024-03-19T08:40:19Z) - The Battleship Approach to the Low Resource Entity Matching Problem [0.0]
We propose a new active learning approach for entity matching problems.
We focus on a selection mechanism that exploits unique properties of entity matching.
An experimental analysis shows that the proposed algorithm outperforms state-of-the-art active learning solutions to low resource entity matching.
arXiv Detail & Related papers (2023-11-27T10:18:17Z) - Divide&Classify: Fine-Grained Classification for City-Wide Visual Place
Recognition [21.039399444257807]
Divide&Classify (D&C) enjoys the fast inference of classification solutions and an accuracy competitive with retrieval methods on the fine-grained, city-wide setting.
We show that D&C can be paired with existing retrieval pipelines to speed up computations by over 20 times while increasing their recall.
arXiv Detail & Related papers (2023-07-17T11:57:04Z) - Actively Discovering New Slots for Task-oriented Conversation [19.815466126158785]
We propose a general new slot task in an information extraction fashion to realize human-in-the-loop learning.
We leverage existing language tools to extract value candidates where the corresponding labels are leveraged as weak supervision signals.
We conduct extensive experiments on several public datasets and compare with a bunch of competitive baselines to demonstrate our method.
arXiv Detail & Related papers (2023-05-06T13:33:33Z) - Learning Classifiers of Prototypes and Reciprocal Points for Universal
Domain Adaptation [79.62038105814658]
Universal Domain aims to transfer the knowledge between datasets by handling two shifts: domain-shift and categoryshift.
Main challenge is correctly distinguishing the unknown target samples while adapting the distribution of known class knowledge from source to target.
Most existing methods approach this problem by first training the target adapted known and then relying on the single threshold to distinguish unknown target samples.
arXiv Detail & Related papers (2022-12-16T09:01:57Z) - ReAct: Temporal Action Detection with Relational Queries [84.76646044604055]
This work aims at advancing temporal action detection (TAD) using an encoder-decoder framework with action queries.
We first propose a relational attention mechanism in the decoder, which guides the attention among queries based on their relations.
Lastly, we propose to predict the localization quality of each action query at inference in order to distinguish high-quality queries.
arXiv Detail & Related papers (2022-07-14T17:46:37Z) - Exploring Visual Context for Weakly Supervised Person Search [155.46727990750227]
Person search has recently emerged as a challenging task that jointly addresses pedestrian detection and person re-identification.
Existing approaches follow a fully supervised setting where both bounding box and identity annotations are available.
This paper inventively considers weakly supervised person search with only bounding box annotations.
arXiv Detail & Related papers (2021-06-19T14:47:13Z) - Clusterability as an Alternative to Anchor Points When Learning with
Noisy Labels [7.920797564912219]
We propose an efficient estimation procedure based on a clusterability condition.
Compared with methods using anchor points, our approach uses substantially more instances and benefits from a much better sample complexity.
arXiv Detail & Related papers (2021-02-10T07:22:56Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
We propose a detection strategy to highlight adversarial support sets.
We make use of feature preserving autoencoder filtering and also the concept of self-similarity of a support set to perform this detection.
Our method is attack-agnostic and also the first to explore detection for few-shot classifiers to the best of our knowledge.
arXiv Detail & Related papers (2020-12-09T14:13:41Z) - Few-Shot Open-Set Recognition using Meta-Learning [72.15940446408824]
The problem of open-set recognition is considered.
A new oPen sEt mEta LEaRning (PEELER) algorithm is introduced.
arXiv Detail & Related papers (2020-05-27T23:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.