NeRFLiX: High-Quality Neural View Synthesis by Learning a
Degradation-Driven Inter-viewpoint MiXer
- URL: http://arxiv.org/abs/2303.06919v2
- Date: Wed, 22 Mar 2023 09:45:51 GMT
- Title: NeRFLiX: High-Quality Neural View Synthesis by Learning a
Degradation-Driven Inter-viewpoint MiXer
- Authors: Kun Zhou, Wenbo Li, Yi Wang, Tao Hu, Nianjuan Jiang, Xiaoguang Han,
Jiangbo Lu
- Abstract summary: We propose NeRFLiX, a general NeRF-agnostic restorer paradigm by learning a degradation-driven inter-viewpoint mixer.
We also propose an inter-viewpoint aggregation framework that is able to fuse highly related high-quality training images.
- Score: 44.220611552133036
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural radiance fields (NeRF) show great success in novel view synthesis.
However, in real-world scenes, recovering high-quality details from the source
images is still challenging for the existing NeRF-based approaches, due to the
potential imperfect calibration information and scene representation
inaccuracy. Even with high-quality training frames, the synthetic novel views
produced by NeRF models still suffer from notable rendering artifacts, such as
noise, blur, etc. Towards to improve the synthesis quality of NeRF-based
approaches, we propose NeRFLiX, a general NeRF-agnostic restorer paradigm by
learning a degradation-driven inter-viewpoint mixer. Specially, we design a
NeRF-style degradation modeling approach and construct large-scale training
data, enabling the possibility of effectively removing NeRF-native rendering
artifacts for existing deep neural networks. Moreover, beyond the degradation
removal, we propose an inter-viewpoint aggregation framework that is able to
fuse highly related high-quality training images, pushing the performance of
cutting-edge NeRF models to entirely new levels and producing highly
photo-realistic synthetic views.
Related papers
- NeRF-Casting: Improved View-Dependent Appearance with Consistent Reflections [57.63028964831785]
Recent works have improved NeRF's ability to render detailed specular appearance of distant environment illumination, but are unable to synthesize consistent reflections of closer content.
We address these issues with an approach based on ray tracing.
Instead of querying an expensive neural network for the outgoing view-dependent radiance at points along each camera ray, our model casts rays from these points and traces them through the NeRF representation to render feature vectors.
arXiv Detail & Related papers (2024-05-23T17:59:57Z) - NeRF-VPT: Learning Novel View Representations with Neural Radiance
Fields via View Prompt Tuning [63.39461847093663]
We propose NeRF-VPT, an innovative method for novel view synthesis to address these challenges.
Our proposed NeRF-VPT employs a cascading view prompt tuning paradigm, wherein RGB information gained from preceding rendering outcomes serves as instructive visual prompts for subsequent rendering stages.
NeRF-VPT only requires sampling RGB data from previous stage renderings as priors at each training stage, without relying on extra guidance or complex techniques.
arXiv Detail & Related papers (2024-03-02T22:08:10Z) - RustNeRF: Robust Neural Radiance Field with Low-Quality Images [29.289408956815727]
We present RustNeRF for real-world high-quality Neural Radiance Fields (NeRF)
To improve NeRF's robustness under real-world inputs, we train a 3D-aware preprocessing network that incorporates real-world degradation modeling.
We propose a novel implicit multi-view guidance to address information loss during image degradation and restoration.
arXiv Detail & Related papers (2024-01-06T16:54:02Z) - Self-Evolving Neural Radiance Fields [31.124406548504794]
We propose a novel framework, dubbed Self-Evolving Neural Radiance Fields (SE-NeRF), that applies a self-training framework to neural radiance field (NeRF)
We formulate few-shot NeRF into a teacher-student framework to guide the network to learn a more robust representation of the scene.
We show and evaluate that applying our self-training framework to existing models improves the quality of the rendered images and achieves state-of-the-art performance in multiple settings.
arXiv Detail & Related papers (2023-12-02T02:28:07Z) - From NeRFLiX to NeRFLiX++: A General NeRF-Agnostic Restorer Paradigm [57.73868344064043]
We propose NeRFLiX, a general NeRF-agnostic restorer paradigm that learns a degradation-driven inter-viewpoint mixer.
We also present NeRFLiX++ with a stronger two-stage NeRF degradation simulator and a faster inter-viewpoint mixer.
NeRFLiX++ is capable of restoring photo-realistic ultra-high-resolution outputs from noisy low-resolution NeRF-rendered views.
arXiv Detail & Related papers (2023-06-10T09:19:19Z) - Benchmarking Robustness in Neural Radiance Fields [22.631924719238963]
We analyze the robustness of NeRF-based novel view synthesis algorithms in the presence of different types of corruptions.
We find that NeRF-based models are significantly degraded in the presence of corruption, and are more sensitive to a different set of corruptions than image recognition models.
arXiv Detail & Related papers (2023-01-10T17:01:12Z) - SiNeRF: Sinusoidal Neural Radiance Fields for Joint Pose Estimation and
Scene Reconstruction [147.9379707578091]
NeRFmm is the Neural Radiance Fields (NeRF) that deal with Joint Optimization tasks.
Despite NeRFmm producing precise scene synthesis and pose estimations, it still struggles to outperform the full-annotated baseline on challenging scenes.
We propose Sinusoidal Neural Radiance Fields (SiNeRF) that leverage sinusoidal activations for radiance mapping and a novel Mixed Region Sampling (MRS) for selecting ray batch efficiently.
arXiv Detail & Related papers (2022-10-10T10:47:51Z) - NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction [50.54946139497575]
We propose NeRFusion, a method that combines the advantages of NeRF and TSDF-based fusion techniques to achieve efficient large-scale reconstruction and photo-realistic rendering.
We demonstrate that NeRFusion achieves state-of-the-art quality on both large-scale indoor and small-scale object scenes, with substantially faster reconstruction than NeRF and other recent methods.
arXiv Detail & Related papers (2022-03-21T18:56:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.