Bag of Tricks with Quantized Convolutional Neural Networks for image
classification
- URL: http://arxiv.org/abs/2303.07080v1
- Date: Mon, 13 Mar 2023 13:05:33 GMT
- Title: Bag of Tricks with Quantized Convolutional Neural Networks for image
classification
- Authors: Jie Hu, Mengze Zeng, Enhua Wu
- Abstract summary: We propose a gold guideline for post-training quantization of deep neural networks.
We evaluate the effectiveness of our proposed method with two popular models, ResNet50 and MobileNetV2, on the ImageNet dataset.
Our results reveal that a quantized MobileNetV2 with 30% sparsity actually surpasses the performance of the equivalent full-precision model.
- Score: 9.240992450548132
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep neural networks have been proven effective in a wide range of tasks.
However, their high computational and memory costs make them impractical to
deploy on resource-constrained devices. To address this issue, quantization
schemes have been proposed to reduce the memory footprint and improve inference
speed. While numerous quantization methods have been proposed, they lack
systematic analysis for their effectiveness. To bridge this gap, we collect and
improve existing quantization methods and propose a gold guideline for
post-training quantization. We evaluate the effectiveness of our proposed
method with two popular models, ResNet50 and MobileNetV2, on the ImageNet
dataset. By following our guidelines, no accuracy degradation occurs even after
directly quantizing the model to 8-bits without additional training. A
quantization-aware training based on the guidelines can further improve the
accuracy in lower-bits quantization. Moreover, we have integrated a multi-stage
fine-tuning strategy that works harmoniously with existing pruning techniques
to reduce costs even further. Remarkably, our results reveal that a quantized
MobileNetV2 with 30\% sparsity actually surpasses the performance of the
equivalent full-precision model, underscoring the effectiveness and resilience
of our proposed scheme.
Related papers
- QuEST: Low-bit Diffusion Model Quantization via Efficient Selective Finetuning [52.157939524815866]
In this paper, we identify imbalanced activation distributions as a primary source of quantization difficulty.<n>We propose to adjust these distributions through weight finetuning to be more quantization-friendly.<n>Our method demonstrates its efficacy across three high-resolution image generation tasks.
arXiv Detail & Related papers (2024-02-06T03:39:44Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Edge Inference with Fully Differentiable Quantized Mixed Precision
Neural Networks [1.131071436917293]
Quantizing parameters and operations to lower bit-precision offers substantial memory and energy savings for neural network inference.
This paper proposes a new quantization approach for mixed precision convolutional neural networks (CNNs) targeting edge-computing.
arXiv Detail & Related papers (2022-06-15T18:11:37Z) - Standard Deviation-Based Quantization for Deep Neural Networks [17.495852096822894]
Quantization of deep neural networks is a promising approach that reduces the inference cost.
We propose a new framework to learn the quantization intervals (discrete values) using the knowledge of the network's weight and activation distributions.
Our scheme simultaneously prunes the network's parameters and allows us to flexibly adjust the pruning ratio during the quantization process.
arXiv Detail & Related papers (2022-02-24T23:33:47Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
Cluster-Promoting Quantization (CPQ) finds the optimal quantization grids for neural networks.
DropBits is a new bit-drop technique that revises the standard dropout regularization to randomly drop bits instead of neurons.
We experimentally validate our method on various benchmark datasets and network architectures.
arXiv Detail & Related papers (2021-09-05T15:15:07Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
We present an effective post-training quantization algorithm for reducing the memory storage and computational costs of vision transformers.
We can obtain an 81.29% top-1 accuracy using DeiT-B model on ImageNet dataset with about 8-bit quantization.
arXiv Detail & Related papers (2021-06-27T06:27:22Z) - In-Hindsight Quantization Range Estimation for Quantized Training [5.65658124285176]
We propose a simple alternative to dynamic quantization, in-hindsight range estimation, that uses the quantization ranges estimated on previous iterations to quantize the present.
Our approach enables fast static quantization of gradients and activations while requiring only minimal hardware support from the neural network accelerator.
It is intended as a drop-in replacement for estimating quantization ranges and can be used in conjunction with other advances in quantized training.
arXiv Detail & Related papers (2021-05-10T10:25:28Z) - One Model for All Quantization: A Quantized Network Supporting Hot-Swap
Bit-Width Adjustment [36.75157407486302]
We propose a method to train a model for all quantization that supports diverse bit-widths.
We use wavelet decomposition and reconstruction to increase the diversity of weights.
Our method can achieve accuracy comparable to dedicated models trained at the same precision.
arXiv Detail & Related papers (2021-05-04T08:10:50Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
This paper proposes two novel techniques to train deep convolutional neural networks with low bit-width weights and activations.
First, to obtain low bit-width weights, most existing methods obtain the quantized weights by performing quantization on the full-precision network weights.
Second, to obtain low bit-width activations, existing works consider all channels equally.
arXiv Detail & Related papers (2020-12-26T15:21:18Z) - Gradient $\ell_1$ Regularization for Quantization Robustness [70.39776106458858]
We derive a simple regularization scheme that improves robustness against post-training quantization.
By training quantization-ready networks, our approach enables storing a single set of weights that can be quantized on-demand to different bit-widths.
arXiv Detail & Related papers (2020-02-18T12:31:34Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.