Improved Tree Search for Automatic Program Synthesis
- URL: http://arxiv.org/abs/2303.07166v1
- Date: Mon, 13 Mar 2023 15:09:52 GMT
- Title: Improved Tree Search for Automatic Program Synthesis
- Authors: Aran Carmon and Lior Wolf
- Abstract summary: A key element is being able to perform an efficient search in the space of valid programs.
Here, we suggest a variant of MCTS that leads to state of the art results on two vastly different DSLs.
- Score: 91.3755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the task of automatic program synthesis, one obtains pairs of matching
inputs and outputs and generates a computer program, in a particular
domain-specific language (DSL), which given each sample input returns the
matching output. A key element is being able to perform an efficient search in
the space of valid programs. Here, we suggest a variant of MCTS that leads to
state of the art results on two vastly different DSLs. The exploration method
we propose includes multiple contributions: a modified visit count, a
preprocessing procedure for the training dataset, and encoding the part of the
program that was already executed.
Related papers
- Self-Supervised Learning to Prove Equivalence Between Straight-Line
Programs via Rewrite Rules [9.1570563482476]
Two programs are equivalent if there exists a sequence of application of rewrite rules that leads to rewriting one program into the other.
We propose a neural network architecture based on a transformer model to generate proofs of equivalence between program pairs.
Our system, S4Eq, achieves 97% proof success on a curated dataset of 10,000 pairs of equivalent programs.
arXiv Detail & Related papers (2021-09-22T01:37:08Z) - Searching for More Efficient Dynamic Programs [61.79535031840558]
We describe a set of program transformations, a simple metric for assessing the efficiency of a transformed program, and a search procedure to improve this metric.
We show that in practice, automated search can find substantial improvements to the initial program.
arXiv Detail & Related papers (2021-09-14T20:52:55Z) - Latent Execution for Neural Program Synthesis Beyond Domain-Specific
Languages [97.58968222942173]
We take the first step to synthesize C programs from input-output examples.
In particular, we propose La Synth, which learns the latent representation to approximate the execution of partially generated programs.
We show that training on these synthesized programs further improves the prediction performance for both Karel and C program synthesis.
arXiv Detail & Related papers (2021-06-29T02:21:32Z) - Latent Programmer: Discrete Latent Codes for Program Synthesis [56.37993487589351]
In many sequence learning tasks, such as program synthesis and document summarization, a key problem is searching over a large space of possible output sequences.
We propose to learn representations of the outputs that are specifically meant for search: rich enough to specify the desired output but compact enough to make search more efficient.
We introduce the emphLatent Programmer, a program synthesis method that first predicts a discrete latent code from input/output examples, and then generates the program in the target language.
arXiv Detail & Related papers (2020-12-01T10:11:35Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
We present a new synthesis approach that leverages learning to guide a bottom-up search over programs.
In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a set of input-output examples.
We show that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches.
arXiv Detail & Related papers (2020-07-28T17:46:18Z) - Synthetic Datasets for Neural Program Synthesis [66.20924952964117]
We propose a new methodology for controlling and evaluating the bias of synthetic data distributions over both programs and specifications.
We demonstrate, using the Karel DSL and a small Calculator DSL, that training deep networks on these distributions leads to improved cross-distribution generalization performance.
arXiv Detail & Related papers (2019-12-27T21:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.