Dual-Attention Model for Aspect-Level Sentiment Classification
- URL: http://arxiv.org/abs/2303.07689v1
- Date: Tue, 14 Mar 2023 08:04:38 GMT
- Title: Dual-Attention Model for Aspect-Level Sentiment Classification
- Authors: Mengfei Ye
- Abstract summary: I propose a novel dual-attention model(DAM) for aspect-level sentiment classification.
We evaluate the proposed approach on three datasets: laptop and restaurant are from SemEval 2014, and the last one is a twitter dataset.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: I propose a novel dual-attention model(DAM) for aspect-level sentiment
classification. Many methods have been proposed, such as support vector
machines for artificial design features, long short-term memory networks based
on attention mechanisms, and graph neural networks based on dependency parsing.
While these methods all have decent performance, I think they all miss one
important piece of syntactic information: dependency labels. Based on this
idea, this paper proposes a model using dependency labels for the attention
mechanism to do this task. We evaluate the proposed approach on three datasets:
laptop and restaurant are from SemEval 2014, and the last one is a twitter
dataset. Experimental results show that the dual attention model has good
performance on all three datasets.
Related papers
- Synergistic Signals: Exploiting Co-Engagement and Semantic Links via
Graph Neural Networks [4.261438296177923]
We study the problem in the context recommender systems at Netflix.
We propose a novel graph-based approach called SemanticGNN.
Our key technical contributions are twofold: (1) we develop a novel relation-aware attention graph neural network (GNN) to handle the imbalanced distribution of relation types in our graph; (2) to handle web-scale graph data that has millions of nodes and billions of edges, we develop a novel distributed graph training paradigm.
arXiv Detail & Related papers (2023-12-07T06:29:26Z) - Automating Style Analysis and Visualization With Explainable AI -- Case
Studies on Brand Recognition [0.4297070083645048]
This paper proposes an AI-driven method to fully automate the discovery of brand-related features.
Our approach introduces BIGNet, a two-tier Brand Identification Graph Neural Network (GNN) to classify and analyze vector graphics.
In the first case study, BIGNet not only classifies phone brands but also captures brand-related features across multiple scales.
arXiv Detail & Related papers (2023-06-05T16:38:11Z) - You Only Need One Thing One Click: Self-Training for Weakly Supervised
3D Scene Understanding [107.06117227661204]
We propose One Thing One Click'', meaning that the annotator only needs to label one point per object.
We iteratively conduct the training and label propagation, facilitated by a graph propagation module.
Our model can be compatible to 3D instance segmentation equipped with a point-clustering strategy.
arXiv Detail & Related papers (2023-03-26T13:57:00Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets.
We propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models.
Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model.
arXiv Detail & Related papers (2023-03-16T00:06:28Z) - Interacting Hand-Object Pose Estimation via Dense Mutual Attention [97.26400229871888]
3D hand-object pose estimation is the key to the success of many computer vision applications.
We propose a novel dense mutual attention mechanism that is able to model fine-grained dependencies between the hand and the object.
Our method is able to produce physically plausible poses with high quality and real-time inference speed.
arXiv Detail & Related papers (2022-11-16T10:01:33Z) - Online Deep Learning based on Auto-Encoder [4.128388784932455]
We propose a two-phase Online Deep Learning based on Auto-Encoder (ODLAE)
Based on auto-encoder, considering reconstruction loss, we extract abstract hierarchical latent representations of instances.
We devise two fusion strategies: the output-level fusion strategy, which is obtained by fusing the classification results of each hidden layer; and feature-level fusion strategy, which is leveraged self-attention mechanism to fusion every hidden layer output.
arXiv Detail & Related papers (2022-01-19T02:14:57Z) - Pack Together: Entity and Relation Extraction with Levitated Marker [61.232174424421025]
We propose a novel span representation approach, named Packed Levitated Markers, to consider the dependencies between the spans (pairs) by strategically packing the markers in the encoder.
Our experiments show that our model with packed levitated markers outperforms the sequence labeling model by 0.4%-1.9% F1 on three flat NER tasks, and beats the token concat model on six NER benchmarks.
arXiv Detail & Related papers (2021-09-13T15:38:13Z) - One Thing One Click: A Self-Training Approach for Weakly Supervised 3D
Semantic Segmentation [78.36781565047656]
We propose "One Thing One Click," meaning that the annotator only needs to label one point per object.
We iteratively conduct the training and label propagation, facilitated by a graph propagation module.
Our results are also comparable to those of the fully supervised counterparts.
arXiv Detail & Related papers (2021-04-06T02:27:25Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
We propose two variants of self-attention for contextual modeling in 3D object detection.
We first incorporate the pairwise self-attention mechanism into the current state-of-the-art BEV, voxel and point-based detectors.
Next, we propose a self-attention variant that samples a subset of the most representative features by learning deformations over randomly sampled locations.
arXiv Detail & Related papers (2021-01-07T18:30:32Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Multi-Label Text Classification using Attention-based Graph Neural
Network [0.0]
A graph attention network-based model is proposed to capture the attentive dependency structure among the labels.
The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
arXiv Detail & Related papers (2020-03-22T17:12:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.