LoG-CAN: local-global Class-aware Network for semantic segmentation of
remote sensing images
- URL: http://arxiv.org/abs/2303.07747v1
- Date: Tue, 14 Mar 2023 09:44:29 GMT
- Title: LoG-CAN: local-global Class-aware Network for semantic segmentation of
remote sensing images
- Authors: Xiaowen Ma, Mengting Ma, Chenlu Hu, Zhiyuan Song, Ziyan Zhao, Tian
Feng, Wei Zhang
- Abstract summary: We present LoG-CAN, a multi-scale semantic segmentation network with a global class-aware (GCA) module and local class-aware (LCA) modules to remote sensing images.
Specifically, the GCA module captures the global representations of class-wise context modeling to circumvent background interference; the LCA modules generate local class representations as intermediate aware elements, indirectly associating pixels with global class representations to reduce variance within a class.
- Score: 4.124381172041927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing images are known of having complex backgrounds, high
intra-class variance and large variation of scales, which bring challenge to
semantic segmentation. We present LoG-CAN, a multi-scale semantic segmentation
network with a global class-aware (GCA) module and local class-aware (LCA)
modules to remote sensing images. Specifically, the GCA module captures the
global representations of class-wise context modeling to circumvent background
interference; the LCA modules generate local class representations as
intermediate aware elements, indirectly associating pixels with global class
representations to reduce variance within a class; and a multi-scale
architecture with GCA and LCA modules yields effective segmentation of objects
at different scales via cascaded refinement and fusion of features. Through the
evaluation on the ISPRS Vaihingen dataset and the ISPRS Potsdam dataset,
experimental results indicate that LoG-CAN outperforms the state-of-the-art
methods for general semantic segmentation, while significantly reducing network
parameters and computation. Code is available
at~\href{https://github.com/xwmaxwma/rssegmentation}{https://github.com/xwmaxwma/rssegmentation}.
Related papers
- LOGCAN++: Adaptive Local-global class-aware network for semantic segmentation of remote sensing imagery [6.715911889086415]
LOGCAN++ is a semantic segmentation model customized for remote sensing images.
It is made up of a Global Class Awareness (GCA) module and several Local Class Awareness (LCA) modules.
LCA module generates local class representations as intermediate perceptual elements to indirectly associate pixels with the global class representations.
arXiv Detail & Related papers (2024-06-24T10:12:03Z) - Hi-ResNet: Edge Detail Enhancement for High-Resolution Remote Sensing Segmentation [10.919956120261539]
High-resolution remote sensing (HRS) semantic segmentation extracts key objects from high-resolution coverage areas.
objects of the same category within HRS images show significant differences in scale and shape across diverse geographical environments.
We propose a High-resolution remote sensing network (Hi-ResNet) with efficient network structure designs.
arXiv Detail & Related papers (2023-05-22T03:58:25Z) - De-coupling and De-positioning Dense Self-supervised Learning [65.56679416475943]
Dense Self-Supervised Learning (SSL) methods address the limitations of using image-level feature representations when handling images with multiple objects.
We show that they suffer from coupling and positional bias, which arise from the receptive field increasing with layer depth and zero-padding.
We demonstrate the benefits of our method on COCO and on a new challenging benchmark, OpenImage-MINI, for object classification, semantic segmentation, and object detection.
arXiv Detail & Related papers (2023-03-29T18:07:25Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
We propose a method to enable the end-to-end pre-training for image segmentation models based on classification datasets.
The proposed method leverages a weighted segmentation learning procedure to pre-train the segmentation network en masse.
Experiment results show that, with ImageNet accompanied by PSSL as the source dataset, the proposed end-to-end pre-training strategy successfully boosts the performance of various segmentation models.
arXiv Detail & Related papers (2022-07-04T13:02:32Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - Boosting Few-shot Semantic Segmentation with Transformers [81.43459055197435]
TRansformer-based Few-shot Semantic segmentation method (TRFS)
Our model consists of two modules: Global Enhancement Module (GEM) and Local Enhancement Module (LEM)
arXiv Detail & Related papers (2021-08-04T20:09:21Z) - Boundary Knowledge Translation based Reference Semantic Segmentation [62.60078935335371]
We introduce a Reference Reference segmentation Network (Ref-Net) to conduct visual boundary knowledge translation.
Inspired by the human recognition mechanism, RSMTM is devised only to segment the same category objects based on the features of the reference objects.
With tens of finely-grained annotated samples as guidance, Ref-Net achieves results on par with fully supervised methods on six datasets.
arXiv Detail & Related papers (2021-08-01T07:40:09Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
We propose an end-to-end multi-category instance segmentation model, which consists of a Semantic Attention (SEA) module and a Scale Complementary Mask Branch (SCMB)
SEA module contains a simple fully convolutional semantic segmentation branch with extra supervision to strengthen the activation of interest instances on the feature map.
SCMB extends the original single mask branch to trident mask branches and introduces complementary mask supervision at different scales.
arXiv Detail & Related papers (2021-07-25T08:53:59Z) - Remote Sensing Images Semantic Segmentation with General Remote Sensing
Vision Model via a Self-Supervised Contrastive Learning Method [13.479068312825781]
We propose Global style and Local matching Contrastive Learning Network (GLCNet) for remote sensing semantic segmentation.
Specifically, the global style contrastive module is used to learn an image-level representation better.
The local features matching contrastive module is designed to learn representations of local regions which is beneficial for semantic segmentation.
arXiv Detail & Related papers (2021-06-20T03:03:40Z) - Universal-RCNN: Universal Object Detector via Transferable Graph R-CNN [117.80737222754306]
We present a novel universal object detector called Universal-RCNN.
We first generate a global semantic pool by integrating all high-level semantic representation of all the categories.
An Intra-Domain Reasoning Module learns and propagates the sparse graph representation within one dataset guided by a spatial-aware GCN.
arXiv Detail & Related papers (2020-02-18T07:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.