DynaMask: Dynamic Mask Selection for Instance Segmentation
- URL: http://arxiv.org/abs/2303.07868v1
- Date: Tue, 14 Mar 2023 13:01:25 GMT
- Title: DynaMask: Dynamic Mask Selection for Instance Segmentation
- Authors: Ruihuang Li, Chenhang He, Shuai Li, Yabin Zhang, Lei Zhang
- Abstract summary: We develop a Mask Switch Module (MSM) with negligible computational cost to select the most suitable mask resolution for each instance.
The proposed method, namely DynaMask, brings consistent and noticeable performance improvements over other state-of-the-arts at a moderate computation overhead.
- Score: 21.50329070835023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The representative instance segmentation methods mostly segment different
object instances with a mask of the fixed resolution, e.g., 28*28 grid.
However, a low-resolution mask loses rich details, while a high-resolution mask
incurs quadratic computation overhead. It is a challenging task to predict the
optimal binary mask for each instance. In this paper, we propose to dynamically
select suitable masks for different object proposals. First, a dual-level
Feature Pyramid Network (FPN) with adaptive feature aggregation is developed to
gradually increase the mask grid resolution, ensuring high-quality segmentation
of objects. Specifically, an efficient region-level top-down path (r-FPN) is
introduced to incorporate complementary contextual and detailed information
from different stages of image-level FPN (i-FPN). Then, to alleviate the
increase of computation and memory costs caused by using large masks, we
develop a Mask Switch Module (MSM) with negligible computational cost to select
the most suitable mask resolution for each instance, achieving high efficiency
while maintaining high segmentation accuracy. Without bells and whistles, the
proposed method, namely DynaMask, brings consistent and noticeable performance
improvements over other state-of-the-arts at a moderate computation overhead.
The source code: https://github.com/lslrh/DynaMask.
Related papers
- MaskUno: Switch-Split Block For Enhancing Instance Segmentation [0.0]
We propose replacing mask prediction with a Switch-Split block that processes refined ROIs, classifies them, and assigns them to specialized mask predictors.
An increase in the mean Average Precision (mAP) of 2.03% was observed for the high-performing DetectoRS when trained on 80 classes.
arXiv Detail & Related papers (2024-07-31T10:12:14Z) - ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE) have emerged as a robust self-supervised framework.
We introduce a data-independent method, termed ColorMAE, which generates different binary mask patterns by filtering random noise.
We demonstrate our strategy's superiority in downstream tasks compared to random masking.
arXiv Detail & Related papers (2024-07-17T22:04:00Z) - Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation [68.16510297109872]
Point-based interactive image segmentation can ease the burden of mask annotation in applications such as semantic segmentation and image editing.
We introduce a novel method, Variance-Insensitive and Target-Preserving Mask Refinement to enhance segmentation quality with fewer user inputs.
Experiments on GrabCut, Berkeley, SBD, and DAVIS datasets demonstrate our method's state-of-the-art performance in interactive image segmentation.
arXiv Detail & Related papers (2023-12-22T02:31:31Z) - DFormer: Diffusion-guided Transformer for Universal Image Segmentation [86.73405604947459]
The proposed DFormer views universal image segmentation task as a denoising process using a diffusion model.
At inference, our DFormer directly predicts the masks and corresponding categories from a set of randomly-generated masks.
Our DFormer outperforms the recent diffusion-based panoptic segmentation method Pix2Seq-D with a gain of 3.6% on MS COCO val 2017 set.
arXiv Detail & Related papers (2023-06-06T06:33:32Z) - Mask Transfiner for High-Quality Instance Segmentation [95.74244714914052]
We present Mask Transfiner for high-quality and efficient instance segmentation.
Our approach only processes detected error-prone tree nodes and self-corrects their errors in parallel.
Our code and trained models will be available at http://vis.xyz/pub/transfiner.
arXiv Detail & Related papers (2021-11-26T18:58:22Z) - Mask is All You Need: Rethinking Mask R-CNN for Dense and
Arbitrary-Shaped Scene Text Detection [11.390163890611246]
Mask R-CNN is widely adopted as a strong baseline for arbitrary-shaped scene text detection and spotting.
There may exist multiple instances in one proposal, which makes it difficult for the mask head to distinguish different instances and degrades the performance.
We propose instance-aware mask learning in which the mask head learns to predict the shape of the whole instance rather than classify each pixel to text or non-text.
arXiv Detail & Related papers (2021-09-08T04:32:29Z) - DCT-Mask: Discrete Cosine Transform Mask Representation for Instance
Segmentation [50.70679435176346]
We propose a new mask representation by applying the discrete cosine transform(DCT) to encode the high-resolution binary grid mask into a compact vector.
Our method, termed DCT-Mask, could be easily integrated into most pixel-based instance segmentation methods.
arXiv Detail & Related papers (2020-11-19T15:00:21Z) - PointINS: Point-based Instance Segmentation [117.38579097923052]
Mask representation in instance segmentation with Point-of-Interest (PoI) features is challenging because learning a high-dimensional mask feature for each instance requires a heavy computing burden.
We propose an instance-aware convolution, which decomposes this mask representation learning task into two tractable modules.
Along with instance-aware convolution, we propose PointINS, a simple and practical instance segmentation approach.
arXiv Detail & Related papers (2020-03-13T08:24:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.