Explanation Shift: How Did the Distribution Shift Impact the Model?
- URL: http://arxiv.org/abs/2303.08081v2
- Date: Thu, 7 Sep 2023 17:04:12 GMT
- Title: Explanation Shift: How Did the Distribution Shift Impact the Model?
- Authors: Carlos Mougan, Klaus Broelemann, David Masip, Gjergji Kasneci,
Thanassis Thiropanis, Steffen Staab
- Abstract summary: We study how explanation characteristics shift when affected by distribution shifts.
We analyze different types of distribution shifts using synthetic examples and real-world data sets.
We release our methods in an open-source Python package, as well as the code used to reproduce our experiments.
- Score: 23.403838118256907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As input data distributions evolve, the predictive performance of machine
learning models tends to deteriorate. In practice, new input data tend to come
without target labels. Then, state-of-the-art techniques model input data
distributions or model prediction distributions and try to understand issues
regarding the interactions between learned models and shifting distributions.
We suggest a novel approach that models how explanation characteristics shift
when affected by distribution shifts. We find that the modeling of explanation
shifts can be a better indicator for detecting out-of-distribution model
behaviour than state-of-the-art techniques. We analyze different types of
distribution shifts using synthetic examples and real-world data sets. We
provide an algorithmic method that allows us to inspect the interaction between
data set features and learned models and compare them to the state-of-the-art.
We release our methods in an open-source Python package, as well as the code
used to reproduce our experiments.
Related papers
- Even Small Correlation and Diversity Shifts Pose Dataset-Bias Issues [19.4921353136871]
We study two types of distribution shifts: diversity shifts, which occur when test samples exhibit patterns unseen during training, and correlation shifts, which occur when test data present a different correlation between seen invariant and spurious features.
We propose an integrated protocol to analyze both types of shifts using datasets where they co-exist in a controllable manner.
arXiv Detail & Related papers (2023-05-09T23:40:23Z) - Are Data-driven Explanations Robust against Out-of-distribution Data? [18.760475318852375]
We propose an end-to-end model-agnostic learning framework Distributionally Robust Explanations (DRE)
Key idea is to fully utilize the inter-distribution information to provide supervisory signals for the learning of explanations without human annotation.
Our results demonstrate that the proposed method significantly improves the model's performance in terms of explanation and prediction robustness against distributional shifts.
arXiv Detail & Related papers (2023-03-29T02:02:08Z) - Dataset Interfaces: Diagnosing Model Failures Using Controllable
Counterfactual Generation [85.13934713535527]
Distribution shift is a major source of failure for machine learning models.
We introduce the notion of a dataset interface: a framework that, given an input dataset and a user-specified shift, returns instances that exhibit the desired shift.
We demonstrate how applying this dataset interface to the ImageNet dataset enables studying model behavior across a diverse array of distribution shifts.
arXiv Detail & Related papers (2023-02-15T18:56:26Z) - Explanation Shift: Detecting distribution shifts on tabular data via the
explanation space [13.050516715665166]
We investigate how model predictive performance and model explanation characteristics are affected under distribution shifts.
We find that the modeling of explanation shifts can be a better indicator for the detection of predictive performance changes.
arXiv Detail & Related papers (2022-10-22T06:47:13Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - Information-theoretic Evolution of Model Agnostic Global Explanations [10.921146104622972]
We present a novel model-agnostic approach that derives rules to globally explain the behavior of classification models trained on numerical and/or categorical data.
Our approach has been deployed in a leading digital marketing suite of products.
arXiv Detail & Related papers (2021-05-14T16:52:16Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Why do classifier accuracies show linear trends under distribution
shift? [58.40438263312526]
accuracies of models on one data distribution are approximately linear functions of the accuracies on another distribution.
We assume the probability that two models agree in their predictions is higher than what we can infer from their accuracy levels alone.
We show that a linear trend must occur when evaluating models on two distributions unless the size of the distribution shift is large.
arXiv Detail & Related papers (2020-12-31T07:24:30Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.