MAHTM: A Multi-Agent Framework for Hierarchical Transactive Microgrids
- URL: http://arxiv.org/abs/2303.08447v2
- Date: Thu, 14 Sep 2023 16:01:06 GMT
- Title: MAHTM: A Multi-Agent Framework for Hierarchical Transactive Microgrids
- Authors: Nicolas Cuadrado, Roberto Gutierrez, Yongli Zhu, Martin Takac
- Abstract summary: This paper proposes a multi-agent reinforcement learning framework for managing energy transactions in microgrids.
It seeks to optimize the usage of available resources by minimizing the carbon footprint while benefiting all stakeholders.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating variable renewable energy into the grid has posed challenges to
system operators in achieving optimal trade-offs among energy availability,
cost affordability, and pollution controllability. This paper proposes a
multi-agent reinforcement learning framework for managing energy transactions
in microgrids. The framework addresses the challenges above: it seeks to
optimize the usage of available resources by minimizing the carbon footprint
while benefiting all stakeholders. The proposed architecture consists of three
layers of agents, each pursuing different objectives. The first layer,
comprised of prosumers and consumers, minimizes the total energy cost. The
other two layers control the energy price to decrease the carbon impact while
balancing the consumption and production of both renewable and conventional
energy. This framework also takes into account fluctuations in energy demand
and supply.
Related papers
- EnergAIze: Multi Agent Deep Deterministic Policy Gradient for Vehicle to Grid Energy Management [0.0]
This paper introduces EnergAIze, a Multi-Agent Reinforcement Learning (MARL) energy management framework.
It enables user-centric and multi-objective energy management by allowing each prosumer to select from a range of personal management objectives.
The efficacy of EnergAIze was evaluated through case studies employing the CityLearn simulation framework.
arXiv Detail & Related papers (2024-04-02T23:16:17Z) - Peer-to-Peer Energy Trading of Solar and Energy Storage: A Networked Multiagent Reinforcement Learning Approach [5.671124014371425]
We propose multi-agent reinforcement learning (MARL) frameworks to help automate consumers' bidding and management of their solar PV and energy storage resources.
We show how the MARL frameworks can integrate physical network constraints to realize voltage control, hence ensuring physical feasibility of the P2P energy trading.
arXiv Detail & Related papers (2024-01-25T05:05:55Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Power Grid Congestion Management via Topology Optimization with
AlphaZero [0.27998963147546135]
We propose an AlphaZero-based grid topology optimization agent as a non-costly, carbon-free congestion management alternative.
Our approach ranked 1st in the WCCI 2022 Learning to Run a Power Network (L2RPN) competition.
arXiv Detail & Related papers (2022-11-10T14:39:28Z) - Renewable energy integration and microgrid energy trading using
multi-agent deep reinforcement learning [2.0427610089943387]
Multi-agent reinforcement learning is used to control a hybrid energy storage system.
Agents learn to control three different types of energy storage system suited for short, medium, and long-term storage.
Being able to trade with the other microgrids, rather than just selling back to the utility grid, was found to greatly increase the grid's savings.
arXiv Detail & Related papers (2021-11-21T21:11:00Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
This paper presents a Reinforcement Learning based energy market for a prosumer dominated microgrid.
The proposed market model facilitates a real-time and demanddependent dynamic pricing environment, which reduces grid costs and improves the economic benefits for prosumers.
arXiv Detail & Related papers (2020-09-23T02:17:51Z) - A Hierarchical Approach to Multi-Energy Demand Response: From
Electricity to Multi-Energy Applications [1.5084441395740482]
This paper looks into an opportunity to control energy consumption of an aggregation of many residential, commercial and industrial consumers.
This ensemble control becomes a modern demand response contributor to the set of modeling tools for multi-energy infrastructure systems.
arXiv Detail & Related papers (2020-05-05T17:17:51Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.