NESS: Node Embeddings from Static SubGraphs
- URL: http://arxiv.org/abs/2303.08958v2
- Date: Tue, 23 May 2023 09:21:14 GMT
- Title: NESS: Node Embeddings from Static SubGraphs
- Authors: Talip Ucar
- Abstract summary: We present a framework for learning Node Embeddings from Static Subgraphs (NESS) using a graph autoencoder (GAE) in a transductive setting.
NESS is based on two key ideas: i) Partitioning the training graph to multiple static, sparse subgraphs with non-overlapping edges using random edge split during data pre-processing.
We demonstrate that NESS gives a better node representation for link prediction tasks compared to current autoencoding methods that use either the whole graph or subgraphs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a framework for learning Node Embeddings from Static Subgraphs
(NESS) using a graph autoencoder (GAE) in a transductive setting. NESS is based
on two key ideas: i) Partitioning the training graph to multiple static, sparse
subgraphs with non-overlapping edges using random edge split during data
pre-processing, ii) Aggregating the node representations learned from each
subgraph to obtain a joint representation of the graph at test time. Moreover,
we propose an optional contrastive learning approach in transductive setting.
We demonstrate that NESS gives a better node representation for link prediction
tasks compared to current autoencoding methods that use either the whole graph
or stochastic subgraphs. Our experiments also show that NESS improves the
performance of a wide range of graph encoders and achieves state-of-the-art
results for link prediction on multiple real-world datasets with edge homophily
ratio ranging from strong heterophily to strong homophily.
Related papers
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Entropy Neural Estimation for Graph Contrastive Learning [9.032721248598088]
Contrastive learning on graphs aims at extracting distinguishable high-level representations of nodes.
We propose a simple yet effective subset sampling strategy to contrast pairwise representations between views of a dataset.
We conduct extensive experiments on seven graph benchmarks, and the proposed approach achieves competitive performance.
arXiv Detail & Related papers (2023-07-26T03:55:08Z) - A Simple and Scalable Graph Neural Network for Large Directed Graphs [11.792826520370774]
We investigate various combinations of node representations and edge direction awareness within an input graph.
In response, we propose a simple yet holistic classification method A2DUG.
We demonstrate that A2DUG stably performs well on various datasets and improves the accuracy up to 11.29 compared with the state-of-the-art methods.
arXiv Detail & Related papers (2023-06-14T06:24:58Z) - Bring Your Own View: Graph Neural Networks for Link Prediction with
Personalized Subgraph Selection [57.34881616131377]
We introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges.
PS2 is instantiated as a bi-level optimization problem that can be efficiently solved differently.
We suggest a brand-new angle towards GNNLP training: by first identifying the optimal subgraphs for edges; and then focusing on training the inference model by using the sampled subgraphs.
arXiv Detail & Related papers (2022-12-23T17:30:19Z) - Line Graph Contrastive Learning for Link Prediction [4.876567687745239]
We propose a Line Graph Contrastive Learning (LGCL) method to obtain multiview information.
With experiments on six public datasets, LGCL outperforms current benchmarks on link prediction tasks.
arXiv Detail & Related papers (2022-10-25T06:57:00Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN)
With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes.
We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones.
arXiv Detail & Related papers (2020-06-18T00:55:10Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
We propose a novel pre-processing technique, namely ELectoral COllege (ELCO), which automatically expands new nodes and edges to refine the label similarity within a dense subgraph.
In all setups tested, our method boosts the average score of base models by a large margin of 4.7 points, as well as consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2020-06-10T14:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.