Active Semi-Supervised Learning by Exploring Per-Sample Uncertainty and
Consistency
- URL: http://arxiv.org/abs/2303.08978v1
- Date: Wed, 15 Mar 2023 22:58:23 GMT
- Title: Active Semi-Supervised Learning by Exploring Per-Sample Uncertainty and
Consistency
- Authors: Jaeseung Lim, Jongkeun Na, Nojun Kwak
- Abstract summary: We propose a method called Active Semi-supervised Learning (ASSL) to improve accuracy of models at a lower cost.
ASSL involves more dynamic model updates than Active Learning (AL) due to the use of unlabeled data.
ASSL achieved about 5.3 times higher computational efficiency than Semi-supervised Learning (SSL) while achieving the same performance.
- Score: 30.94964727745347
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Active Learning (AL) and Semi-supervised Learning are two techniques that
have been studied to reduce the high cost of deep learning by using a small
amount of labeled data and a large amount of unlabeled data. To improve the
accuracy of models at a lower cost, we propose a method called Active
Semi-supervised Learning (ASSL), which combines AL and SSL. To maximize the
synergy between AL and SSL, we focused on the differences between ASSL and AL.
ASSL involves more dynamic model updates than AL due to the use of unlabeled
data in the training process, resulting in the temporal instability of the
predicted probabilities of the unlabeled data. This makes it difficult to
determine the true uncertainty of the unlabeled data in ASSL. To address this,
we adopted techniques such as exponential moving average (EMA) and upper
confidence bound (UCB) used in reinforcement learning. Additionally, we
analyzed the effect of label noise on unsupervised learning by using weak and
strong augmentation pairs to address datainconsistency. By considering both
uncertainty and datainconsistency, we acquired data samples that were used in
the proposed ASSL method. Our experiments showed that ASSL achieved about 5.3
times higher computational efficiency than SSL while achieving the same
performance, and it outperformed the state-of-the-art AL method.
Related papers
- Learning Label Refinement and Threshold Adjustment for Imbalanced Semi-Supervised Learning [6.904448748214652]
Semi-supervised learning algorithms struggle to perform well when exposed to imbalanced training data.
We introduce SEmi-supervised learning with pseudo-label optimization based on VALidation data (SEVAL)
SEVAL adapts to specific tasks with improved pseudo-labels accuracy and ensures pseudo-labels correctness on a per-class basis.
arXiv Detail & Related papers (2024-07-07T13:46:22Z) - Reinforcement Learning-Guided Semi-Supervised Learning [20.599506122857328]
We propose a novel Reinforcement Learning Guided SSL method, RLGSSL, that formulates SSL as a one-armed bandit problem.
RLGSSL incorporates a carefully designed reward function that balances the use of labeled and unlabeled data to enhance generalization performance.
We demonstrate the effectiveness of RLGSSL through extensive experiments on several benchmark datasets and show that our approach achieves consistent superior performance compared to state-of-the-art SSL methods.
arXiv Detail & Related papers (2024-05-02T21:52:24Z) - A Channel-ensemble Approach: Unbiased and Low-variance Pseudo-labels is Critical for Semi-supervised Classification [61.473485511491795]
Semi-supervised learning (SSL) is a practical challenge in computer vision.
Pseudo-label (PL) methods, e.g., FixMatch and FreeMatch, obtain the State Of The Art (SOTA) performances in SSL.
We propose a lightweight channel-based ensemble method to consolidate multiple inferior PLs into the theoretically guaranteed unbiased and low-variance one.
arXiv Detail & Related papers (2024-03-27T09:49:37Z) - Can semi-supervised learning use all the data effectively? A lower bound
perspective [58.71657561857055]
We show that semi-supervised learning algorithms can leverage unlabeled data to improve over the labeled sample complexity of supervised learning algorithms.
Our work suggests that, while proving performance gains for SSL algorithms is possible, it requires careful tracking of constants.
arXiv Detail & Related papers (2023-11-30T13:48:50Z) - InstanT: Semi-supervised Learning with Instance-dependent Thresholds [75.91684890150283]
We propose the study of instance-dependent thresholds, which has the highest degree of freedom compared with existing methods.
We devise a novel instance-dependent threshold function for all unlabeled instances by utilizing their instance-level ambiguity and the instance-dependent error rates of pseudo-labels.
arXiv Detail & Related papers (2023-10-29T05:31:43Z) - FlatMatch: Bridging Labeled Data and Unlabeled Data with Cross-Sharpness
for Semi-Supervised Learning [73.13448439554497]
Semi-Supervised Learning (SSL) has been an effective way to leverage abundant unlabeled data with extremely scarce labeled data.
Most SSL methods are commonly based on instance-wise consistency between different data transformations.
We propose FlatMatch which minimizes a cross-sharpness measure to ensure consistent learning performance between the two datasets.
arXiv Detail & Related papers (2023-10-25T06:57:59Z) - Complementing Semi-Supervised Learning with Uncertainty Quantification [6.612035830987296]
We propose a novel unsupervised uncertainty-aware objective that relies on aleatoric and epistemic uncertainty quantification.
Our results outperform the state-of-the-art results on complex datasets such as CIFAR-100 and Mini-ImageNet.
arXiv Detail & Related papers (2022-07-22T00:15:02Z) - Collaborative Intelligence Orchestration: Inconsistency-Based Fusion of
Semi-Supervised Learning and Active Learning [60.26659373318915]
Active learning (AL) and semi-supervised learning (SSL) are two effective, but often isolated, means to alleviate the data-hungry problem.
We propose an innovative Inconsistency-based virtual aDvErial algorithm to further investigate SSL-AL's potential superiority.
Two real-world case studies visualize the practical industrial value of applying and deploying the proposed data sampling algorithm.
arXiv Detail & Related papers (2022-06-07T13:28:43Z) - Robust Deep Semi-Supervised Learning: A Brief Introduction [63.09703308309176]
Semi-supervised learning (SSL) aims to improve learning performance by leveraging unlabeled data when labels are insufficient.
SSL with deep models has proven to be successful on standard benchmark tasks.
However, they are still vulnerable to various robustness threats in real-world applications.
arXiv Detail & Related papers (2022-02-12T04:16:41Z) - Relieving the Plateau: Active Semi-Supervised Learning for a Better
Landscape [2.3046646540823916]
Semi-supervised learning (SSL) leverages unlabeled data that are more accessible than their labeled counterparts.
Active learning (AL) selects unlabeled instances to be annotated by a human-in-the-loop in hopes of better performance with less labeled data.
We propose convergence rate control (CRC), an AL algorithm that selects unlabeled data to improve the problem conditioning upon inclusion to the labeled set.
arXiv Detail & Related papers (2021-04-08T06:03:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.