Cross-Modal Causal Intervention for Medical Report Generation
- URL: http://arxiv.org/abs/2303.09117v5
- Date: Thu, 29 May 2025 08:27:32 GMT
- Title: Cross-Modal Causal Intervention for Medical Report Generation
- Authors: Weixing Chen, Yang Liu, Ce Wang, Jiarui Zhu, Guanbin Li, Cheng-Lin Liu, Liang Lin,
- Abstract summary: Radiology Report Generation (RRG) is essential for computer-aided diagnosis and medication guidance.<n> generating accurate lesion descriptions remains challenging due to spurious correlations from visual-linguistic biases.<n>We propose a two-stage framework named CrossModal Causal Representation Learning (CMCRL)<n> Experiments on IU-Xray and MIMIC-CXR show that our CMCRL pipeline significantly outperforms state-of-the-art methods.
- Score: 107.76649943399168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radiology Report Generation (RRG) is essential for computer-aided diagnosis and medication guidance, which can relieve the heavy burden of radiologists by automatically generating the corresponding radiology reports according to the given radiology image. However, generating accurate lesion descriptions remains challenging due to spurious correlations from visual-linguistic biases and inherent limitations of radiological imaging, such as low resolution and noise interference. To address these issues, we propose a two-stage framework named CrossModal Causal Representation Learning (CMCRL), consisting of the Radiological Cross-modal Alignment and Reconstruction Enhanced (RadCARE) pre-training and the Visual-Linguistic Causal Intervention (VLCI) fine-tuning. In the pre-training stage, RadCARE introduces a degradation-aware masked image restoration strategy tailored for radiological images, which reconstructs high-resolution patches from low-resolution inputs to mitigate noise and detail loss. Combined with a multiway architecture and four adaptive training strategies (e.g., text postfix generation with degraded images and text prefixes), RadCARE establishes robust cross-modal correlations even with incomplete data. In the VLCI phase, we deploy causal front-door intervention through two modules: the Visual Deconfounding Module (VDM) disentangles local-global features without fine-grained annotations, while the Linguistic Deconfounding Module (LDM) eliminates context bias without external terminology databases. Experiments on IU-Xray and MIMIC-CXR show that our CMCRL pipeline significantly outperforms state-of-the-art methods, with ablation studies confirming the necessity of both stages. Code and models are available at https://github.com/WissingChen/CMCRL.
Related papers
- Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.
LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.
We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - CRRG-CLIP: Automatic Generation of Chest Radiology Reports and Classification of Chest Radiographs [2.1711205684359247]
The CRRG-CLIP Model is an end-to-end model for automated report generation and radiograph classification.<n>The generation module uses Faster R-CNN to identify anatomical regions in radiographs, a binary classifier to select key regions, and GPT-2 to generate semantically coherent reports.<n>The classification module uses the unsupervised Contrastive Language Image Pretraining (CLIP) model, addressing the challenges of high-cost labelled datasets.
arXiv Detail & Related papers (2024-12-31T03:07:27Z) - HC-LLM: Historical-Constrained Large Language Models for Radiology Report Generation [89.3260120072177]
We propose a novel Historical-Constrained Large Language Models (HC-LLM) framework for Radiology report generation.
Our approach extracts both time-shared and time-specific features from longitudinal chest X-rays and diagnostic reports to capture disease progression.
Notably, our approach performs well even without historical data during testing and can be easily adapted to other multimodal large models.
arXiv Detail & Related papers (2024-12-15T06:04:16Z) - Improving Factuality of 3D Brain MRI Report Generation with Paired Image-domain Retrieval and Text-domain Augmentation [42.13004422063442]
Acute ischemic stroke (AIS) requires time-critical management, with hours of delayed intervention leading to an irreversible disability of the patient.
Since diffusion weighted imaging (DWI) using the magnetic resonance image (MRI) plays a crucial role in the detection of AIS, automated prediction of AIS from DWI has been a research topic of clinical importance.
While text radiology reports contain the most relevant clinical information from the image findings, the difficulty of mapping across different modalities has limited the factuality of conventional direct DWI-to-report generation methods.
arXiv Detail & Related papers (2024-11-23T08:18:55Z) - TRRG: Towards Truthful Radiology Report Generation With Cross-modal Disease Clue Enhanced Large Language Model [22.305034251561835]
We propose a truthful radiology report generation framework, namely TRRG, based on stage-wise training for cross-modal disease clue injection into large language models.
Our proposed framework achieves state-of-the-art performance in radiology report generation on datasets such as IU-Xray and MIMIC-CXR.
arXiv Detail & Related papers (2024-08-22T05:52:27Z) - Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
We introduce a novel method, textbfStructural textbfEntities extraction and patient indications textbfIncorporation (SEI) for chest X-ray report generation.
We employ a structural entities extraction (SEE) approach to eliminate presentation-style vocabulary in reports.
We propose a cross-modal fusion network to integrate information from X-ray images, similar historical cases, and patient-specific indications.
arXiv Detail & Related papers (2024-05-23T01:29:47Z) - SERPENT-VLM : Self-Refining Radiology Report Generation Using Vision Language Models [9.390882250428305]
Radiology Report Generation (R2Gen) demonstrates how Multi-modal Large Language Models (MLLMs) can automate the creation of accurate and coherent radiological reports.
Existing methods often hallucinate details in text-based reports that don't accurately reflect the image content.
We introduce a novel strategy, which improves the R2Gen task by integrating a self-refining mechanism into the MLLM framework.
arXiv Detail & Related papers (2024-04-27T13:46:23Z) - DPER: Diffusion Prior Driven Neural Representation for Limited Angle and Sparse View CT Reconstruction [45.00528216648563]
Diffusion Prior Driven Neural Representation (DPER) is an unsupervised framework designed to address the exceptionally ill-posed CT reconstruction inverse problems.
DPER adopts the Half Quadratic Splitting (HQS) algorithm to decompose the inverse problem into data fidelity and distribution prior sub-problems.
We conduct comprehensive experiments to evaluate the performance of DPER on LACT and ultra-SVCT reconstruction with two public datasets.
arXiv Detail & Related papers (2024-04-27T12:55:13Z) - Dynamic Traceback Learning for Medical Report Generation [12.746275623663289]
This study proposes a novel multi-modal dynamic traceback learning framework (DTrace) for medical report generation.
We introduce a traceback mechanism to supervise the semantic validity of generated content and a dynamic learning strategy to adapt to various proportions of image and text input.
The proposed DTrace framework outperforms state-of-the-art methods for medical report generation.
arXiv Detail & Related papers (2024-01-24T07:13:06Z) - Medical Report Generation based on Segment-Enhanced Contrastive
Representation Learning [39.17345313432545]
We propose MSCL (Medical image with Contrastive Learning) to segment organs, abnormalities, bones, etc.
We introduce a supervised contrastive loss that assigns more weight to reports that are semantically similar to the target while training.
Experimental results demonstrate the effectiveness of our proposed model, where we achieve state-of-the-art performance on the IU X-Ray public dataset.
arXiv Detail & Related papers (2023-12-26T03:33:48Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Unify, Align and Refine: Multi-Level Semantic Alignment for Radiology
Report Generation [48.723504098917324]
We propose an Unify, Align and then Refine (UAR) approach to learn multi-level cross-modal alignments.
We introduce three novel modules: Latent Space Unifier, Cross-modal Representation Aligner and Text-to-Image Refiner.
Experiments and analyses on IU-Xray and MIMIC-CXR benchmark datasets demonstrate the superiority of our UAR against varied state-of-the-art methods.
arXiv Detail & Related papers (2023-03-28T12:42:12Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - Cross-Modal Causal Relational Reasoning for Event-Level Visual Question
Answering [134.91774666260338]
Existing visual question answering methods often suffer from cross-modal spurious correlations and oversimplified event-level reasoning processes.
We propose a framework for cross-modal causal relational reasoning to address the task of event-level visual question answering.
arXiv Detail & Related papers (2022-07-26T04:25:54Z) - Radiomics-Guided Global-Local Transformer for Weakly Supervised
Pathology Localization in Chest X-Rays [65.88435151891369]
Radiomics-Guided Transformer (RGT) fuses textitglobal image information with textitlocal knowledge-guided radiomics information.
RGT consists of an image Transformer branch, a radiomics Transformer branch, and fusion layers that aggregate image and radiomic information.
arXiv Detail & Related papers (2022-07-10T06:32:56Z) - AlignTransformer: Hierarchical Alignment of Visual Regions and Disease
Tags for Medical Report Generation [50.21065317817769]
We propose an AlignTransformer framework, which includes the Align Hierarchical Attention (AHA) and the Multi-Grained Transformer (MGT) modules.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that the AlignTransformer can achieve results competitive with state-of-the-art methods on the two datasets.
arXiv Detail & Related papers (2022-03-18T13:43:53Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
We propose an Auxiliary Signal-Guided Knowledge-Decoder (ASGK) to mimic radiologists' working patterns.
ASGK integrates internal visual feature fusion and external medical linguistic information to guide medical knowledge transfer and learning.
arXiv Detail & Related papers (2020-06-06T01:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.