Characterizing Manipulation from AI Systems
- URL: http://arxiv.org/abs/2303.09387v3
- Date: Mon, 30 Oct 2023 13:50:03 GMT
- Title: Characterizing Manipulation from AI Systems
- Authors: Micah Carroll, Alan Chan, Henry Ashton, David Krueger
- Abstract summary: We build upon prior literature on manipulation from other fields and characterize the space of possible notions of manipulation.
We propose a definition of manipulation based on our characterization.
Third, we discuss the connections between manipulation and related concepts, such as deception and coercion.
- Score: 7.344068411174193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Manipulation is a common concern in many domains, such as social media,
advertising, and chatbots. As AI systems mediate more of our interactions with
the world, it is important to understand the degree to which AI systems might
manipulate humans without the intent of the system designers. Our work
clarifies challenges in defining and measuring manipulation in the context of
AI systems. Firstly, we build upon prior literature on manipulation from other
fields and characterize the space of possible notions of manipulation, which we
find to depend upon the concepts of incentives, intent, harm, and covertness.
We review proposals on how to operationalize each factor. Second, we propose a
definition of manipulation based on our characterization: a system is
manipulative if it acts as if it were pursuing an incentive to change a human
(or another agent) intentionally and covertly. Third, we discuss the
connections between manipulation and related concepts, such as deception and
coercion. Finally, we contextualize our operationalization of manipulation in
some applications. Our overall assessment is that while some progress has been
made in defining and measuring manipulation from AI systems, many gaps remain.
In the absence of a consensus definition and reliable tools for measurement, we
cannot rule out the possibility that AI systems learn to manipulate humans
without the intent of the system designers. We argue that such manipulation
poses a significant threat to human autonomy, suggesting that precautionary
actions to mitigate it are warranted.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Human-Modeling in Sequential Decision-Making: An Analysis through the Lens of Human-Aware AI [20.21053807133341]
We try to provide an account of what constitutes a human-aware AI system.
We see that human-aware AI is a design oriented paradigm, one that focuses on the need for modeling the humans it may interact with.
arXiv Detail & Related papers (2024-05-13T14:17:52Z) - Trust in AI: Progress, Challenges, and Future Directions [6.724854390957174]
The increasing use of artificial intelligence (AI) systems in our daily life explains the significance of trust/distrust in AI from a user perspective.
Trust/distrust in AI plays the role of a regulator and could significantly control the level of this diffusion.
arXiv Detail & Related papers (2024-03-12T20:26:49Z) - Deception and Manipulation in Generative AI [0.0]
I argue that AI-generated content should be subject to stricter standards against deception and manipulation.
I propose two measures to guard against AI deception and manipulation.
arXiv Detail & Related papers (2024-01-20T21:54:37Z) - Artificial Influence: An Analysis Of AI-Driven Persuasion [0.0]
We warn that ubiquitous highlypersuasive AI systems could alter our information environment so significantly so as to contribute to a loss of human control of our own future.
We conclude that none of these solutions will be airtight, and that individuals and governments will need to take active steps to guard against the most pernicious effects of persuasive AI.
arXiv Detail & Related papers (2023-03-15T16:05:11Z) - "No, to the Right" -- Online Language Corrections for Robotic
Manipulation via Shared Autonomy [70.45420918526926]
We present LILAC, a framework for incorporating and adapting to natural language corrections online during execution.
Instead of discrete turn-taking between a human and robot, LILAC splits agency between the human and robot.
We show that our corrections-aware approach obtains higher task completion rates, and is subjectively preferred by users.
arXiv Detail & Related papers (2023-01-06T15:03:27Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations.
We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design.
arXiv Detail & Related papers (2021-07-28T17:32:04Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z) - Understanding Contexts Inside Robot and Human Manipulation Tasks through
a Vision-Language Model and Ontology System in a Video Stream [4.450615100675747]
We present a vision dataset under a strictly constrained knowledge domain for both robot and human manipulations.
We propose a scheme to generate a combination of visual attentions and an evolving knowledge graph filled with commonsense knowledge.
The proposed scheme allows the robot to mimic human-like intentional behaviors by watching real-time videos.
arXiv Detail & Related papers (2020-03-02T19:48:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.